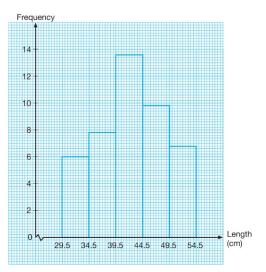
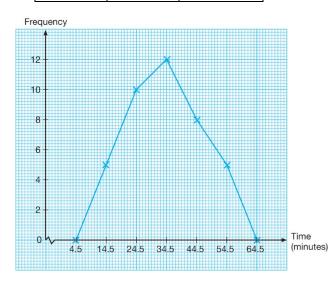

Form 5 Chapter 7 Measures of Dispersion of Grouped Data Fully-Worked Solutions

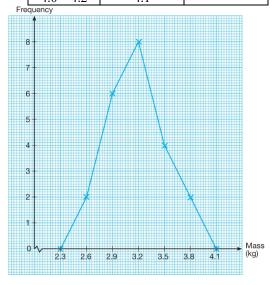
UPSKILL 7.1

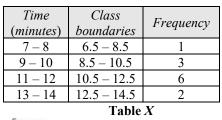

1			
	Height (m)	Upper boundary	Frequency
	6 - 7	5.5 - 7.5	10
	8 - 9	7.5 - 9.5	12
	10 - 11	9.5 - 11.5	9
	12 - 13	11.5 - 13.5	4
	14 - 15	13.5 - 15.5	2

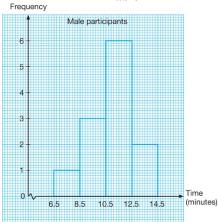
Frequency



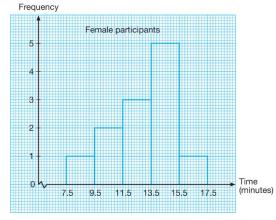
2


-			
	<i>Length</i> (cm)	Class boundaries	Frequency
	30 - 34	29.5 - 34.5	6
	35 - 39	34.5 - 39.5	8
	40 - 44	39.5 - 44.5	14
	45 - 49	44.5 - 49.5	10
	50 - 54	49.5 - 54.5	7

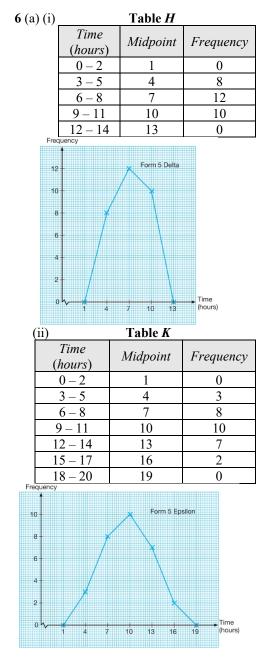

<i>Time</i> (<i>minutes</i>)	Midpoint	Frequency
0-9	4.5	0
10 - 19	14.5	5
20 - 29	24.5	10
30 - 39	34.5	12
40 - 49	44.5	8
50 - 59	54.5	5
60 - 69	64.5	0



Mass (kg) Midpoint Frequency 2.2 - 2.42.3 0 2.6 2.5 - 2.72 2.8 - 3.02.9 6 3.1 - 3.3 3.2 8 3.4 - 3.6 3.5 4 3.7 - 3.93.8 2 4.0 - 4.24.1


5

Time (minutes)	Class boundaries	Frequency
8-9	7.5 - 9.5	1
10 - 11	9.5 - 11.5	5
12 - 13	11.5 - 13.5	3
14 - 15	13.5 - 15.5	2
16 - 17	15.5 - 17.5	1

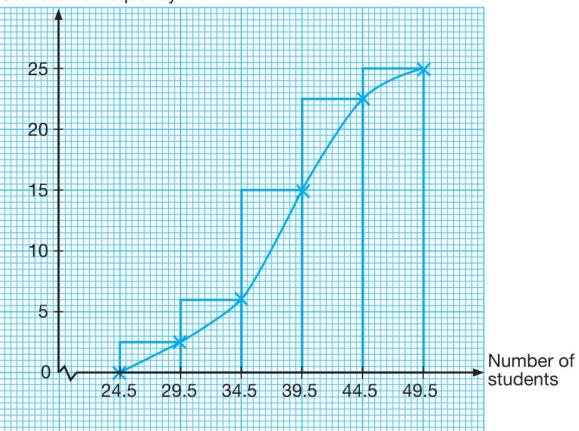

Table Y

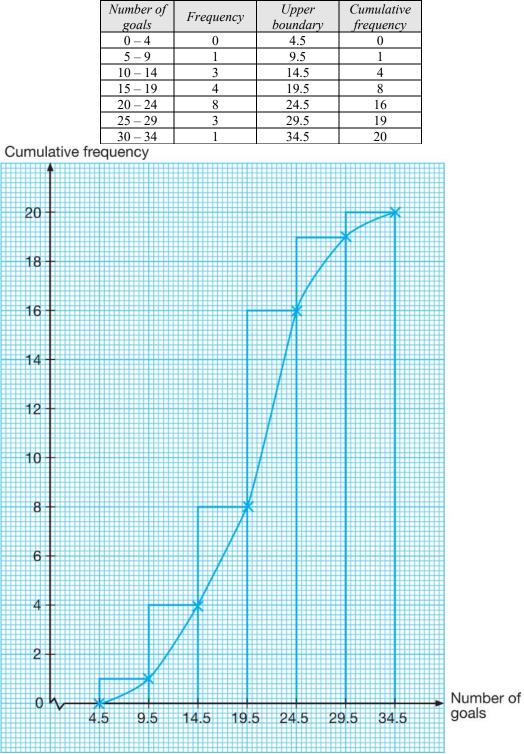
(b) Interpretation:

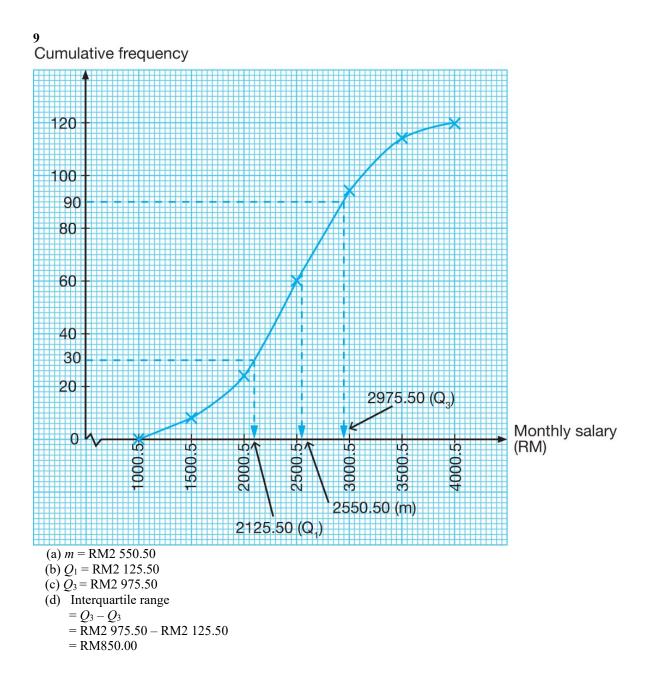
The times taken by the men's participants dispersed from 7 to 14 minutes and the modal class is (11 - 12) minutes. The times taken by the women's participants dispersed from 8 to 17 minutes and the modal class is (14 - 15) minutes. *Conclusion*:

The times taken by the women's participants are more widely dispersed compared to the men's participants. The average time of the men's participants is shorter than that of the women.

The distribution of times taken by the students of Form 5 Delta to attend tuition classes dispersed from 3 to 11 hours a week and the modal class is (6 - 8) hours. The distribution of times taken by the students of Form 5 Epsilon to attend tuition classes dispersed from 3 to 17 hours a week and the modal class is (9 - 11) hours.

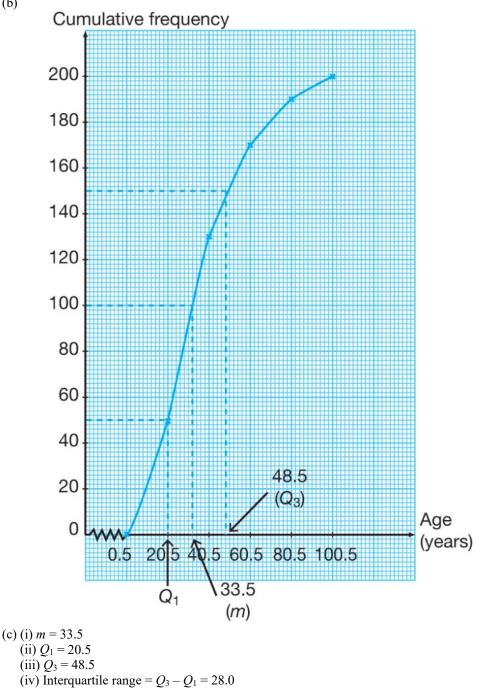

Conclusion:

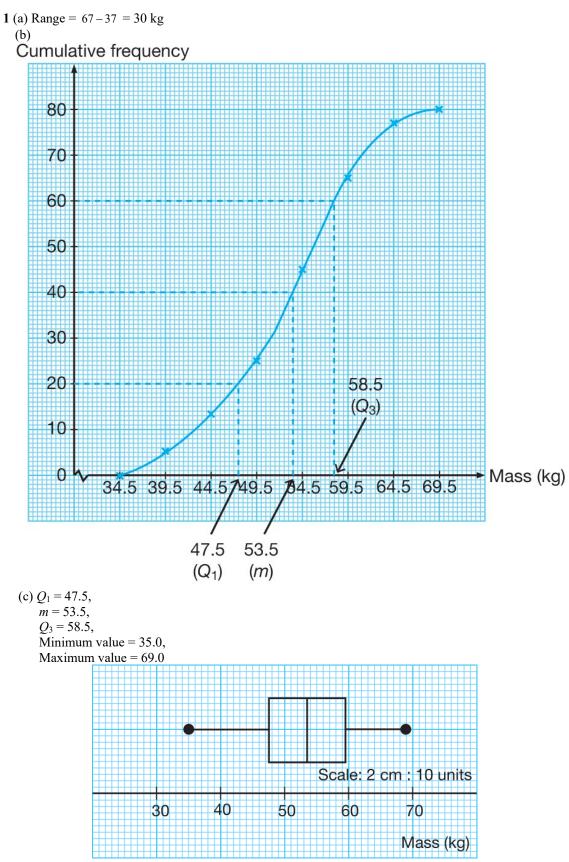

The distribution of times taken by the students of Form 5 Epsilon is more widely dispersed compared to that of the students of 5 Delta. The average time to attend tuition classes for the students of Form 5 Epsilon is longer compared to that of the students of 5 Delta.


Diameter (mm)	Frequency	Cumulative frequency
1 - 2	4	4
3-4	8	12
5 - 6	9	21
7 - 8	13	34
9-10	6	40
11 - 12	4	44

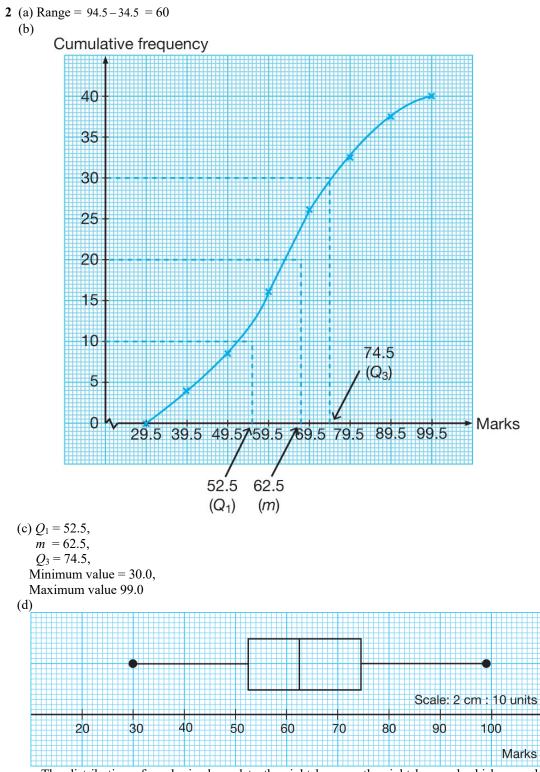
Number of students	Upper boundary	Frequency	Cumulative frequency
20 - 24	24.5	0	0
25 - 29	29.5	2	2
30 - 34	34.5	4	6
35 - 39	39.5	9	15
40 - 44	44.4	7	22
45 - 49	49.5	3	28

Cumulative frequency




10 (a)

Age (years)	Frequency	Upper boundary	Cumulative frequency
	0	0.5	0
1 - 20	50	20.5	50
21 - 40	80	40.5	130
41 - 60	40	60.5	170
61 - 80	20	80.5	190
81 - 100	10	100.5	200


(b)

UPSKILL 7.2

The distribution of mass is skewed to the left because the left box and whisker are longer compared to that of the right.

The distribution of marks is skewed to the right because the right box and whisker are longer compared to that of the left.

Time (s)	Frequency (f)	$\begin{array}{c} Midpoint\\ (x) \end{array}$	fx	fx^2
151 - 165	6	158	948	149 784
166 - 180	15	173	2 595	448 935
181 - 195	20	188	3 760	706 882
196 - 210	13	203	2 639	535 717
211 - 225	5	218	1 090	237 620
226 - 240	1	233	233	54 289
	60		11 265	2 133 225

$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{11265}{60} = 187.75 \text{ s}$$
(b) $\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - (\overline{x})^2} = \sqrt{\frac{2133225}{60} - 187.75^2} = 17.43 \text{ s}$
(c) $\sigma^2 = 303.6875 \text{ s}^2$

(a)

$$\frac{Marks}{(f)} = \frac{Frequency}{(f)} = \frac{Midpoint}{(x)} = \frac{fx}{fx} = \frac{fx^2}{fx^2}$$

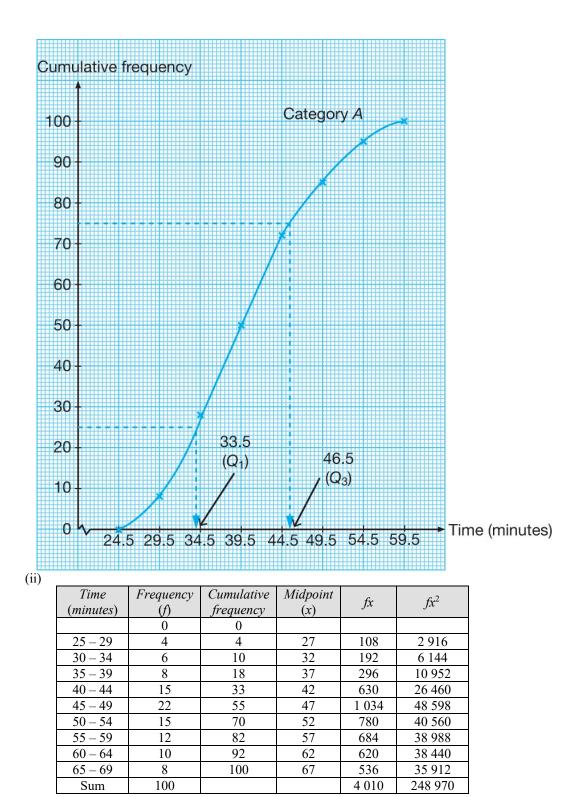
$$\frac{50-59}{14} = \frac{54.5}{50} = \frac{763}{1032} = \frac{41583.5}{60-69}$$

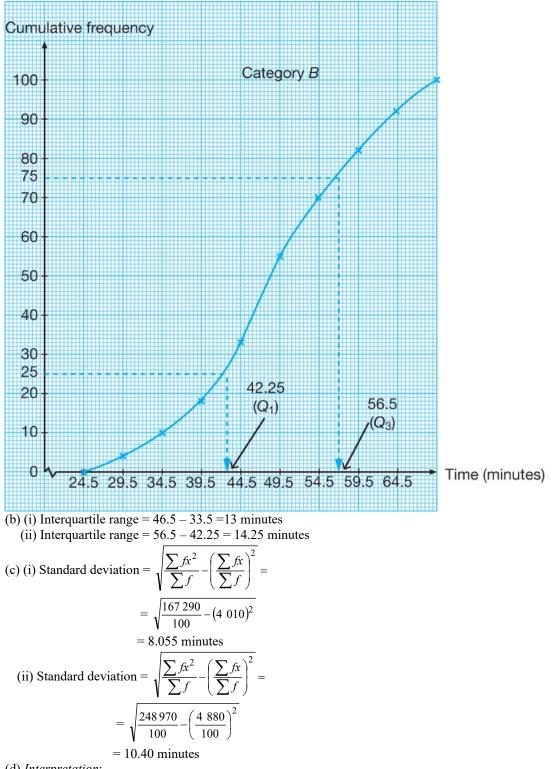
$$\frac{60-69}{16} = \frac{64.5}{1032} = \frac{6564}{564}$$

$$\frac{70-79}{10} = \frac{74.5}{745} = \frac{745}{55502.5}$$

$$\frac{80-89}{6} = \frac{684.5}{507} = \frac{32841.5}{50}$$

$$\frac{50}{3425} = \frac{3425}{242212.5}$$


$$\frac{1}{x} = \frac{\sum fx}{\sum f} = \frac{3425}{50} = 68.5$$


$$(b) \sigma = \sqrt{\frac{\sum fx^2}{\sum f} - (\overline{x})^2} = \sqrt{\frac{242212.5}{50} - 68.5^2} = 12.33$$

$$(c) \sigma^2 = 152$$

(a) (i)

Time (minutes)	Frequency (f)	Cumulative frequency	$\begin{array}{c} Midpoint\\ (x) \end{array}$	fx	fx^2
20 - 24	0	0			
25 - 29	8	8	27	216	5 832
30 - 34	20	28	32	640	20 480
35 - 39	22	50	37	814	30 118
40 - 44	22	72	42	924	38 808
45 - 49	14	86	47	658	30 926
50 - 54	8	94	52	416	21 632
55 - 59	6	100	57	342	19 949
Sum	100			4 010	167 290

(d) Interpretation:

Both interquartile range and standard deviation of the walking times of the students of category *B* are greater than the walking times of the students of category *A*. *Conclusion*:

The walking times of students of category B are more widely disperse compared to the walking times of the students of category A.

6 (a) (i) Quartet of school R

	Time (s)	Frequency (f)	$\begin{array}{c} Midpoint\\ (x) \end{array}$	fx	fx^2
Ī	201 - 210	2	205.5	411	84 460.5
Ī	211 - 220	3	215.5	646.5	139 320.75
Ī	221 - 230	6	225.5	1353	305 101.5
Ī	231 - 240	3	235.5	706.5	166 380.75
	241 - 250	2	245.5	491	120 540.5
	Sum	16		3 608	815 804

$$Min = \frac{\sum fx}{\sum f} = \frac{3\ 608}{16} = 225.5\ s$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - (x)^2} = \sqrt{\frac{815\,804}{16} - 225.5^2} = 11.73 \text{ s}$$

(ii) Quartet of school S:

Time (s)	Frequency (f)	$\begin{array}{c} Midpoint\\ (x) \end{array}$	fx	fx^2
191 - 200	1	195.5	195.5	38 220.25
201 - 210	2	205.5	411	84 460.5
211 - 220	3	215.5	646.5	139
				320.75
221 - 230	4	225.5	902	203 401
231 - 240	3	235.5	706.5	166
				380.75
241 - 250	2	245.5	491	120 540.5
251 - 260	1	255.5	255.5	65 280.25
Sum			3 608	817 604

$$Min = \frac{3\ 608}{16} = 225.5\ s$$

Standard deviation =
$$\sqrt{\frac{817\,604}{16} - 225.5^2} = 15.81$$
 s

(b) Although the mean times for both quartets are the same, but the standard deviation of the quartet from school *R* is smaller than the quartet from school *S*. Hence, the performance of the quartet from school *R* is more consistent.

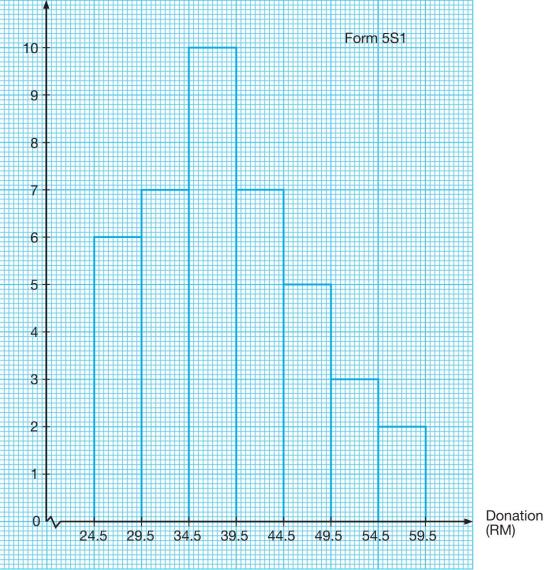
Summative Practice 7

Multiple-Choice Questions

1					
Number of reference book	1 – 2	3-4	5-6	7 - 8	9-10
Frequency	3	7	8	10	8
Cumulative frequency	3	10	18	28	36

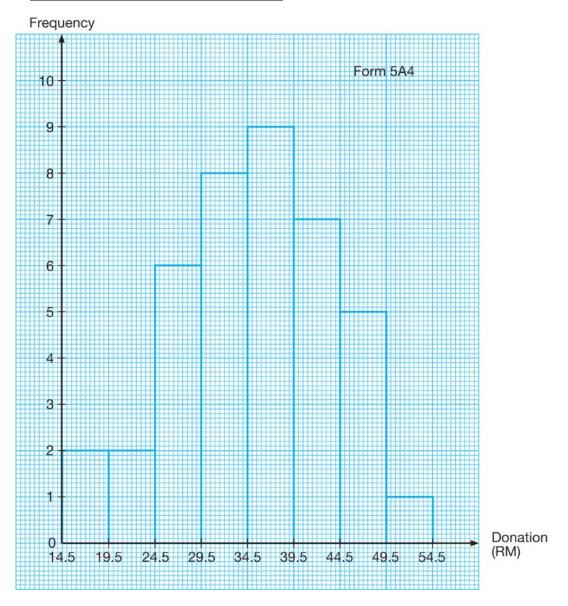
The modal class is 7 - 8. *Answer*: C

2


Score	61 - 65	66 - 70	71 - 75	76 - 80	81 - 85	Sum
Midpoint(x)	63	68	73	78	83	
Frequency (f)	5	4	6	3	2	20
fx	315	272	438	234	166	1 425
fx^2	19 845	18 496	31 976	18 252	13 778	102 345
Cumulative	5	9	15	18	20	

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$
$$\sigma = \sqrt{\frac{102\,345}{20} - \left(\frac{1\,425}{20}\right)^2}$$

 σ = 6.379 *Answer*: B


Donation (RM)	Class boundaries	Frequency
25 - 29	24.5 - 29.5	6
30-34	29.5 - 34.5	7
35 - 39	34.5 - 39.5	10
40 - 44	39.5 - 44.5	7
45-49	44.5 - 49.5	5
50-54	49.5 - 54.5	3
55 - 59	54.5 - 99.5	2

Frequency

(b)

Donation (RM)	Class boundaries	Frequency
15 - 19	14.5 - 19.5	2
20 - 24	19.5 - 24.5	2
25 - 29	24.5 - 29.5	6
30 - 34	29.5 - 34.5	8
35 - 39	34.5 - 39.5	9
40 - 44	39.5 - 44.5	7
45 - 49	44.5 - 49.5	5
50 - 54	49.5 - 54.5	1

EXCEL Mathematics SPM

(c) (i) 5S1

Donation (RM)	Midpoint	Frequency (f)	fx
25 - 29	27	6	162
30 - 34	32	7	224
35-39	37	10	370
40 - 44	42	7	294
45 - 49	47	5	235
50 - 54	52	3	156
55 - 59	57	2	114
		$\sum f = 40$	$\sum fx^2 = 1555$
$-\sum fx = 1.55$	5		

$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{1555}{40} = 38.88$$

(ii) 5A4

-				
	Donation (RM)	Midpoint	Frequency (f)	fx
	15 - 19	17	2	34
	20 - 24	22	2	44
	25 - 29	27	6	162
	30 - 34	32	8	256
	35 - 39	37	9	333
	40 - 44	42	7	294
	45 - 49	47	5	235
	50 - 54	53	1	53
			$\sum f = 40$	$\sum fx^2 = 1 \ 411$

$$\bar{x} = \frac{\sum fx}{\sum f} = \frac{1\ 411}{40} = 35.28$$

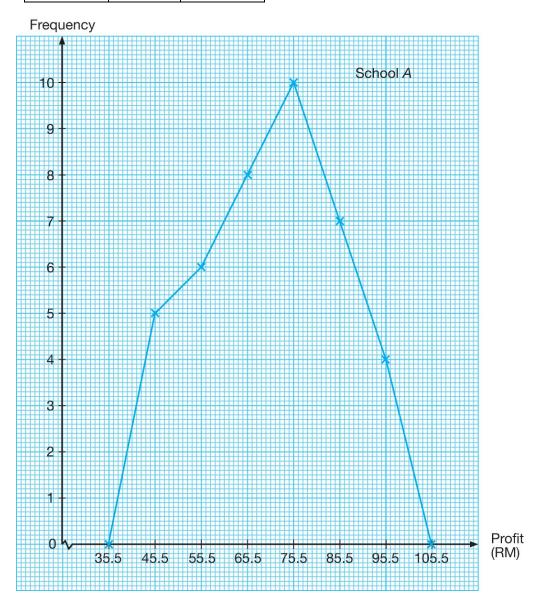
(d) Histogram of Form 5S1

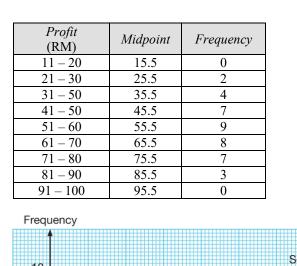
Interpretation:

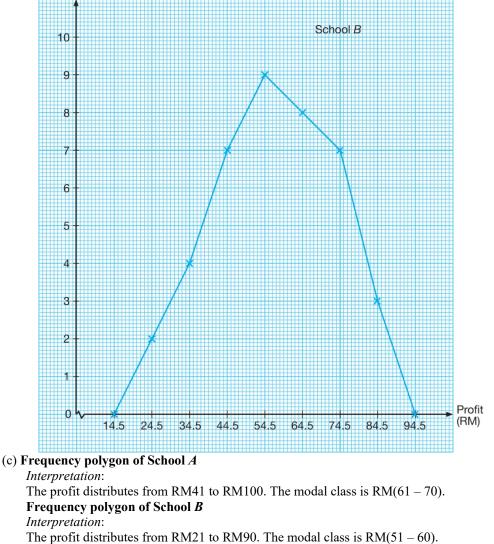
The donations collected distributes from RM25 to RM59. The mean is RM38.88.

Histogram of Form 5A4

Interpretation:

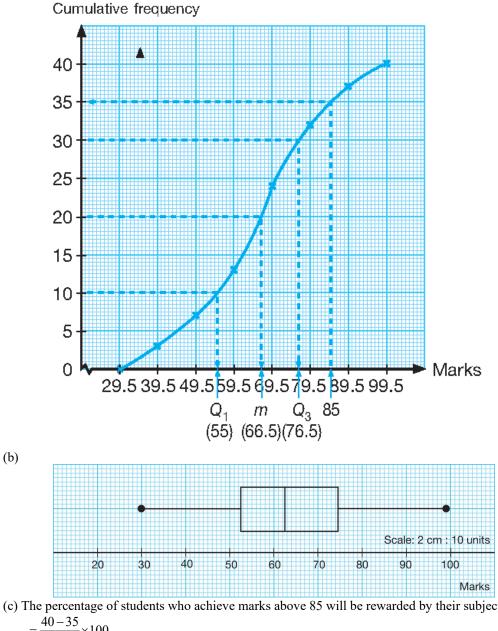

The donations collected distributes from RM15 to RM54. The mean is RM35.28.


Conclusion:


The donations collected by the students of 5S1 are more than the donations collected by the students of Form 5A4.

The distribution of donations collected by the students of 5A4 is more widely dispersed compared to the donations collected by the students of 5S1.

Profit (RM)	Midpoint	Frequency
31 - 40	35.5	0
41 - 50	45.5	6
51 - 60	55.5	7
61 - 70	65.5	10
71 - 80	75.5	7
81 - 90	85.5	5
91 - 100	95.5	3
101 - 110	105.5	0

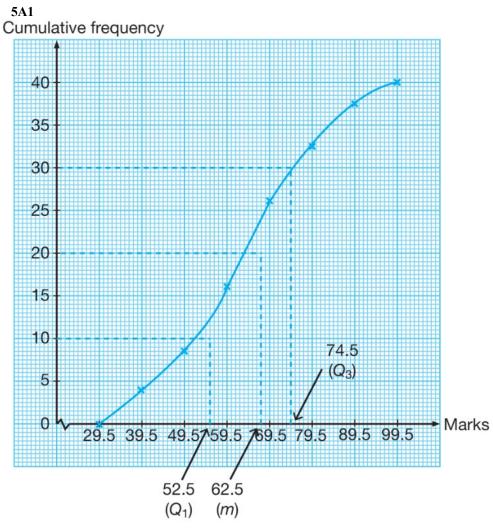


Conclusion:

The profits obtained by the students of School A are more that the profits obtained by the students of School B.

The distribution of profits obtained by the students of School B is more widely dispersed as compared to the distribution of profits obtained by the students of School A.

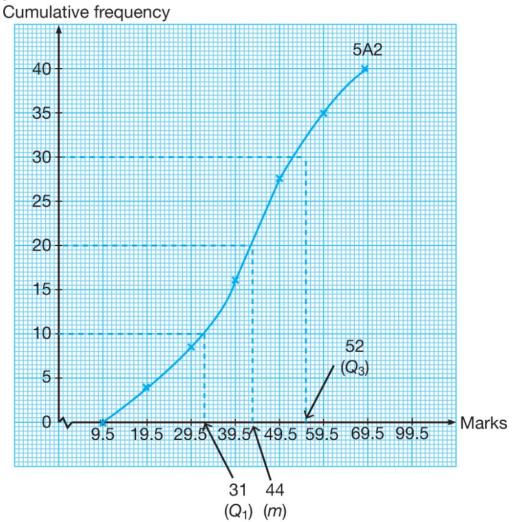
Marks	Frequency	Upper boundary	Cumalative frequency
20 - 29	0	29.5	0
30 - 39	3	39.5	3
40 - 49	4	49.5	7
50 - 59	6	59.5	13
60 - 69	11	69.5	24
70 - 79	8	79.5	32
80 - 89	5	89.5	37
90 - 99	3	99.5	40



(c) The percentage of students who achieve marks above 85 will be rewarded by their subject teacher $=\frac{40-35}{40} \times 100$

=12.5%

4 (a) (i)


Marks	Frequency	Upper boundary	Cumulative frequency
	0	29.5	0
30 - 39	4	39.5	4
10 - 49	5	49.5	9
50 - 59	7	59.5	16
60 - 69	11	69.5	27
70 - 79	7	79.5	34
80 - 89	5	89.5	39
90 - 99	1	99.5	40

(ii)

Marks	Frequency	Upper boundary	Cumulative frequency
		19.5	0
20 - 29	4	29.5	4
30 - 39	5	39.5	9
40 - 49	7	49.5	16
50 - 59	12	59.5	28
60 - 69	7	69.5	35
70 - 79	5	79.5	40

5A2

(b) (i)
$$m = 63.5$$
, $Q_3 - Q_1 = 74.5 - 52.5 = 22$
(ii) $m = 44$, $Q_3 - Q_1 = 52 - 31 = 21$

(c) (i)

٠,					
	Marks	Frequency (f)	$\begin{array}{c} Midpoint\\ (x) \end{array}$	fx	fx^2
ĺ	30 - 39	4	34.5	138	4 761
	40 - 49	5	44.5	222.5	9 901.25
	50 - 59	7	54.5	381.5	20 791.75
	60 - 69	11	64.5	709.5	45 762.75
	70 - 79	7	74.5	521.5	38 851.75
	80 - 89	5	84.5	422.5	35 701.25
	90 - 99	1	94.5	94.5	8 930.25
	Sum	40		2 490	164 700

Standard deviation =	$\frac{\sum fx^2}{\sum f} -$	$-\left(\frac{\sum fx}{\sum f}\right)^2 =$	$\sqrt{\frac{164\ 700}{40}}$ -	$\overline{\left(\frac{2\ 490}{40}\right)^2} = 15$	5.57
----------------------	------------------------------	--	--------------------------------	--	------

Marks	Frequency (f)	Midpoint (x)	fx	fx^2
20 - 29	4	29.5	118	3 481
30 - 39	5	39.5	197.5	7 801.25
40 - 49	7	49.5	346.5	17 151.75
50 - 59	12	59.5	714	42 483
60 - 69	7	69.5	486.5	33 811.75
70 - 79	5	79.5	397.5	31 601.25
Sum	40		2 260	163 330

(ii) Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} = \sqrt{\frac{136\ 330}{40} - \left(\frac{2\ 260}{40}\right)^2} = 14.70$$

(d) *Interpretation*:

- The interquartile range of the marks of the students of 5A1 is larger than the interquartile range of the marks of the students of 5A2.
- The standard deviation of the marks of the students of 5A1 is larger than the standard deviation of the marks of the students of 5A2.
- The median of the marks of the students of 5A1 is larger than the median of the marks of the students of 5A2.

Conclusion:

The distribution of marks of the students of 5A1 is more widely dispersed compared to the distribution of marks of the students of 5A2. Based on the median, the marks of the students of 5A1 are higher than the marks of the students of 5A2.