

Not similar because $\frac{PQ}{AB} = \frac{ST}{DE} = \frac{5}{8}$ but $\frac{RS}{CD} = \frac{PT}{AE} = \frac{1}{2}$.

 ΔPQR and ΔPRS are similar because the corresponding angles are equal.

 ΔZXY and ΔZAB are similar because they have two corresponding sides which are proportional and one equal angle.

10 Area of
$$ACDE = \left(\frac{120}{30}\right)^2 \times \text{Area of } ABGF$$

Area of $ABGF + \text{Area of the shaded region}$
= 16 × Area of $ABGF$
15 × Area of $ABGF = 225$
Area of $ABGF = 15 \text{ cm}^2$
11 Area of $HKMN = \left(\frac{30}{20}\right)^2 \times \text{Area of } PQRS$
Area of $PQRS + \text{Area of the shaded region}$
= $\frac{9}{4} \times \text{Area of } PQRS$
 $\frac{5}{4} \times \text{Area of } PQRS = \text{Area of the shaded}$
region
 $\frac{5}{4} \times \text{Area of } PQRS = 100$
Area of $PQRS = 80 \text{ cm}^2$

2

- **9** V is reflection in the straight line y = 3U is an enlargement at the centre A(11, 3)with a scale factor of 3
- **10** W is reflection in the straight line x = 1

 $\begin{pmatrix} 0\\ -7 \end{pmatrix}$

4

- 11 K is a clockwise rotation of 90° about the centre Q(2, -4)**H** is an enlargement at the centre Q(2, -4)with a scale factor of 2
- 12 S is an anticlockwise rotation of 90° about the centre F(2, 4)

(b) Anticlockwise rotation of 90° about the origin

(b) Rotation of 180° about the centre (0, 2)

(b) Rotation of 180° about the centre (2, 2)

- **19** (a) (i) $B(5,3) \xrightarrow{\mathbf{P}} (3,5)$ (ii) $B(5,3) \xrightarrow{\mathbf{P}} (3,5) \xrightarrow{\mathbf{T}} (5,2)$ (iii) $B(5,3) \xrightarrow{\mathbf{P}} (3,5) \xrightarrow{\mathbf{R}} (3,1)$ (b) **W** is an anticlockwise rotation of 90° about the centre C(3,3)
 - **V** is an enlargement at the centre M(4, 3) with a scale factor of 3
 - (c) Area of $\triangle MQN = 3^2 \times \text{Area of } \triangle ABC$ $288 = 9 \times \text{Area of } \triangle ABC$ Area of $\triangle ABC = 32 \text{ cm}^2$
- 20 (a) (i) Reflection in the *x*-axis (ii) Reflection in the *y*-axis (iii) Rotation of 180° about the origin
 - (b) Enlargement at the centre (3, 0) with a scale factor of 3
 - (c) Area of $\Delta KLM = 3^2 \times \text{Area of } \Delta A''B''C''$ $270 = 9 \times \text{Area of } \Delta A''B''C''$ Area of $\Delta A''B''C'' = 30 \text{ cm}^2$

6

Summative Practice 5

(b)

Multiple-Choice Question

- 1 Area of $SKZWV = 4^2 \times$ Area of SLMNUArea of SLMNU + Area of the shaded region $= 16 \times \text{Area of } SLMNU$ $180 = 15 \times \text{Area of } SLMNU$ Area of $SLMNU = 12 \text{ cm}^2$ Answer: B
- (a+h)**2** Translation b+k

Answer: C

- **3** Clockwise rotation of $\theta \alpha$ about the origin Answer: A
- 4 $(2,2) \xrightarrow{\mathbf{R}} (2,-2) \xrightarrow{\mathbf{T}} (1,-4)$ Answer: B
- 5 $(2,3) \xrightarrow{T} (3,1) \xrightarrow{E} (5,1)$ Answer: D

Structured Question

- 1 (a) $\angle PSQ = \angle RQS$ (Alternate angles, PS // QR) $\angle PQS = \angle RSQ$ (Alternate angles, PQ//SR) $SQ(\Delta PSQ) = SQ(\Delta RSQ)$ (Common side) $\therefore \Delta PQS \cong \Delta RQS (ASA) [Angle-Side-Angle]$ (b) AC = EC $\angle ACB = \angle ECD$ (Vertically opposite angles) BC = DC $\therefore \Delta ABC \cong \Delta EDC$ (SAS) [Side-Angle-Side]
- **2** (a) $\triangle CED$ and $\triangle CHK$ are similar.

(b)
$$\frac{HK}{ED} = \frac{9}{5}$$

 $\frac{CK}{CD} = \frac{CK}{6}$
 $\therefore \frac{CK}{6} = \frac{9}{5}$
 $CK = 10\frac{4}{5}$ cm

3 (a)
$$\Delta RST$$
 and ΔRUV are similar.
(b) $\frac{UV}{ST} = \frac{x}{2}$
 $\frac{RU}{RS} = \frac{7}{3}$
 $\therefore \frac{x}{2} = \frac{7}{3}$
 $x = 4\frac{2}{3}$ cm
 $\frac{RT}{RV} = \frac{y}{y+6}$
 $\frac{RS}{RU} = \frac{3}{7}$
 $\therefore \frac{y}{y+6} = \frac{3}{7}$
 $7y = 3y + 18$
 $4y = 18$
 $y = 4\frac{1}{2}$ cm

- shaded region
- $8 \times \text{Area of } ABCD = 64$ Area of $ABCD = 8 \text{ cm}^2$

6 (a) $T(10, 2) \xrightarrow{\mathbf{L}} (7, 4) \xrightarrow{\mathbf{L}} (4, 6)$ $R(7,2) \xrightarrow{\mathbf{W}} (6,5) \xrightarrow{\mathbf{L}} (3,7)$ (b) (i) U is a reflection in the straight line y = 8. V is an enlargement at the centre P(4, 11) with a scale factor of 3. (c) Area of $ROPST = 3^2 \times Area of ABCDEF$ $=9 \times 60$ $= 540 \text{ cm}^2$ Area of the shaded region $= 540 - 60 = 480 \text{ cm}^2$ 7 (a) (i) $B(2,4) \xrightarrow{\mathbf{T}} (5,2) \xrightarrow{\mathbf{R}} (2,-1)$ (ii) $B(2,4) \xrightarrow{\mathbf{R}} (0,2) \xrightarrow{\mathbf{T}} (3,0)$ (b) (i) (a) U is an anticlockwise rotation of 90° about the centre C(6, 10). (b) V is an enlargement at the centre (10, 10) with a scale factor of 2. (ii) Area of $DEGF = 2^2 \times Area \text{ of } DABG$ $= 4 \times 20$ = 80Area of the shaded region = 80 - 20 $= 60 \text{ m}^2$ 8 (a) (i) $(3, 4) \xrightarrow{T} (1, 1)$ (ii) $(3, 4) \xrightarrow{\mathbf{R}} (4, -1)$ (iii) $(3, 4) \xrightarrow{\mathbf{R}} (4, -1) \xrightarrow{\mathbf{T}} (2, -4)$ (b) (i) (a) V is a reflection in the straight line y = 1(b) W is an enlargement at the centre (4, -2) with a scale factor of 3 (ii) Area of *PQRS* = $3^2 \times 25 = 225$ Area of the shaded region = 225 - 25 $= 200 \text{ cm}^2$ **9** (a) (i) $A(1, 2) \xrightarrow{\mathbf{P}} (2, 1) \xrightarrow{\mathbf{T}} (-3, 4)$ (ii) $A(1,2) \xrightarrow{\mathbf{R}} (-3,0) \xrightarrow{\mathbf{P}} (0,-3)$ (b) (i) (a) W is a reflection in the straight line y = 3(b) V is an enlargement at the centre (2, 1) with a scale factor of 3 (ii) Area of $DHFG = 3^2 \times Area of MNKL$ Area of $DHFG = 9 \times 14 = 126$ Area of the shaded region = 126 - 14 $= 112 \text{ units}^2$

- **10** (a) (i) $J(1,2) \xrightarrow{\mathbf{R}} (5,2) \xrightarrow{\mathbf{U}} (3,4)$ (ii) $J(1,2) \xrightarrow{\mathbf{T}} (3,5) \xrightarrow{\mathbf{R}} (3,5)$
 - (b) (i) N is a reflection in the straight line y = 6
 - (ii) **M** is an enlargement at the centre F(7, 8) with a scale factor of 3

(c) Area of $EFGH = 3^2 \times Area \text{ of } ABCD$ Area of $EFGH = 9 \times 20 = 180 \text{ m}^2$ Area of the shaded region = 180 - 20 $= 160 \text{ m}^2$

- 11 (a) (i) $A(5,3) \xrightarrow{\mathbf{T}} (3,7) \xrightarrow{\mathbf{T}} (1,11)$ (ii) $A(5,3) \xrightarrow{\mathbf{T}} (-3,5) \xrightarrow{\mathbf{T}} (-5,9)$
 - (b) (i) (a) N is a reflection in the straight line *BC*
 - (b) **M** is an enlargement at the centre (4, 2) with a scale factor of 3
 - (ii) Area of shaded region = Area of ΔFDE – Area of ΔCGB = 270 – 30 = 240 m²

12 (a) (i)
$$K(5,9) \xrightarrow{\mathbf{T}} (2,5) \xrightarrow{\mathbf{T}} (-1,1)$$

(ii) $K(5,9) \xrightarrow{\mathbf{P}} (5,3) \xrightarrow{\mathbf{T}} (2,-1)$
(b) (i) (a) **N** is a clockwise rotation of 90°
about the centre (4, 5).
(b) **M** is an enlargement at the centre
 $Q(5, 8)$ with a scale factor of 3
(ii) Area of $QRSTU = 3^2 \times$ Area of

KLMNP 180 = 9 Area of KLMNPArea of $KLMNP = 20 \text{ m}^2$

13 (a) (i) $H''(4, 4) \xrightarrow{\mathbf{R}^{-1}} H'(4, -4) \xrightarrow{\mathbf{T}^{-1}} H(-2, 1)$

(11)
$$H^{\gamma}(4, 4) \xrightarrow{\mathbf{r}} H^{\gamma}(2, 2) \xrightarrow{\mathbf{r}} H(2, -2)$$

(b) (i) (a) $v = x$ (b) $x = 7$

- (ii) Anticlockwise rotation of 90° about the centre (7, 7)
- (c) (i) W is an enlargement at the centre (-2, 0) with a scale factor of 2
- (ii) Area of hexagon $A = 56.5 \text{ cm}^2$ Area of hexagon $P = 2^2 \times 56.5$ $= 226 \text{ cm}^2$