

3					
Gra	ph	Gradient of graph	Interpretation of graph		
AE	}	$\frac{10 \text{ m}}{5 \text{ s}} = 2 \text{ m s}^{-1}$	Uniform speed of 2 m s ^{-1} from <i>H</i> to <i>K</i>		
BC	ŗ	$0 \mathrm{~m~s^{-1}}$	Stationary at <i>K</i> for 7 seconds 10 m from <i>H</i>		
CL)	$-\frac{10 \text{ m}}{4 \text{ s}} = -2.5 \text{ m s}^{-1}$	Return from <i>K</i> to <i>H</i> with a uniform velocity of 2.5 m s ^{-1}		

$$\frac{140-40}{1} = 100 \text{ km h}^{-1}$$
(b) Speed = 0 km h⁻¹
(c) Gradient = $=\frac{140}{2} = -70$
Hence, speed = 70 km h⁻¹

 $\boldsymbol{5}\left(a\right)$ Average speed of the truck

$$=\frac{300}{16}=18.75$$
 m s⁻¹

(b) Gradient
$$-\frac{300}{10} = -30$$

Hence, the speed of the taxi = 30 m s⁻¹ (c) Distance from Q = 300 - 60 = 240 m

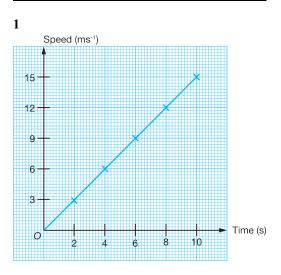
6 (a) Difference of distance = 24 - 12 = 12 m(b) The speed of the bicycle = $\frac{16-4}{8-0} = \frac{16-4}{8} = 1.5 \text{ m s}^{-1}$

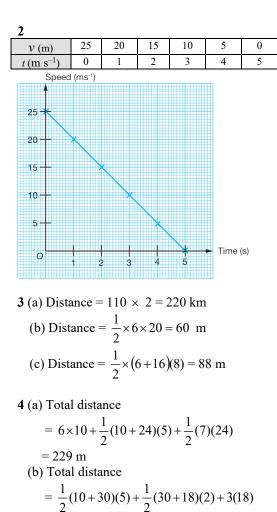
(c) The time taken to meet =
$$2\frac{2}{3}$$
 s

7 (a) The time when both vehicles meet = 0840

(b) Speed of bus
$$=\frac{60}{50} = 72 \text{ km h}^{-1}$$

(c) Gradient $=-\frac{120}{\frac{60}{60}} = -120$
Hence, speed of taxi $= 120 \text{ km h}^{-1}$


8 (a) Speed =
$$\frac{15}{6} = 2\frac{1}{2}$$
 m s⁻¹
(b) The period of time at rest = $14 - 6 = 8$ s
(c) $\frac{x}{24} = \frac{5}{4}$
 $x = 30$


9 (a) Gradient =
$$-\frac{100}{10} = -10$$

Speed = 10 m s⁻¹
(b) The period of time at rest is 10 s
(c) Average of speed = $\frac{200}{T} = \frac{20}{3}$
 $T = \frac{3}{20} \times 200$
 $T = 30$

10 (a) Gradient = $-\frac{180}{6} = -30$ Speed of car = 30 m s⁻¹ (b) Speed of van = $\frac{80}{3} = 26\frac{2}{3}$ m s⁻¹ (c) Distance travelled by the car = 180-80 = 100 m

11 (a) Distance travelled = 80-30 = 50 m (b) Speed = $\frac{30}{2} = 15$ m s⁻¹ (c) Average speed = $\frac{100}{t} = \frac{25}{3}$ t = 12

$$=100 + 48 + 54$$

= 202 m

2

5 (a)

()					
	Graf	Area under a graph	Interpretation of graph		
	HK	90 km	Total distance travelled is 90 km.		
	KL	30 km	Total distance travelled is 30 km.		
	LM	97.5 km	Total distance travelled is 97.5 km.		
(b)					
	Graf	Gradient of graph	Interpretation of graph		

Graf	Gradient of graph	Interpretation of graph
HK	-15 km h ⁻²	The deceleration is 15 km h ⁻²
KL	0 km h^{-2}	The acceleration is 0 km h^{-2} / The uniform speed is 30 km h^{-1} .
LM	$46\frac{2}{3}$ km h ⁻²	The acceleration is $46\frac{2}{3}$ km h ⁻² .

(c) The van decelerates uniformly from a speed of 60 km h^{-1} with a deceleration of 15 km h⁻² until the speed is 30 km h⁻¹ in 2 hours. The distance travelled during the deceleration id 90 km. Then, the van travels with a uniform speed of 30 km h⁻¹ for 30 km in 1 hour. Then, the van accelerates uniformly with an acceleration of $46\frac{2}{3}$ km h⁻² for 97.5 km until it reaches a speed of 100 km h⁻¹ in 1.5 hours.

6 (a)

(a) Distance = 265

$$\frac{1}{2}(10+40)(7) + \frac{1}{2}(40+u)(3) = 265$$

$$175 + \frac{3(40+u)}{2} = 265$$

$$\frac{3(40+u)}{2} = 90$$

$$40+u = \frac{180}{3}$$

$$40+u = \frac{180}{3}$$

$$u = 20$$
(b) Average speed = $\frac{175}{7} = 25 \text{ m s}^{-1}$
(c) Rate of change of speed

$$= -\frac{40-20}{3}$$

$$= -6\frac{2}{3} \text{ m s}^{-2}$$

7 (a) The time travelling at uniform speed = 12t - 4 = 12

t = 16Total distance = 330 m(b) $\frac{1}{2}(v+15)(8) + 4(15) + \frac{1}{2}(4)(15) = 330$ 4v + 60 + 60 + 30 = 3304v = 180v = 45(c) Rate of change of speed

 $=\frac{30}{14}$ $= 7.5 \text{ m s}^{-2}$

8 (a) Uniform speed = 10 m s⁻¹
(b) (i) Rate of change of speed =
$$\frac{5}{7}$$

 $\frac{10}{t} = \frac{5}{7}$
 $5t = 70$
 $t = 14$
(ii) Total distance
 $= \frac{1}{2}(14)(10) + 10(2) + \frac{1}{2}(10 + 16)(8)$
 $= 194$ m
Average speed = $\frac{194}{24} = 8\frac{1}{12}$ m s⁻¹

9 (a) Distance travelled at a uniform speed = 144 m

$$18(12 - t) = 144$$

$$12 - t = 8$$

$$t = 4$$

(b) Rate of change of speed

$$= -\frac{18}{3}$$

$$= -6 \text{ m s}^{-2}$$

(c) Total distance

$$= \frac{1}{2} \times (30 + 18) \times 4 + 144 + \frac{1}{2} (3)(18)$$

$$= 267 \text{ m}$$

Average speed = $\frac{267}{15} = 17\frac{4}{5} \text{ m s}^{-1}$

- 10 (a) Distance travelled at a uniform speed $10 \times 8 = 80 \text{ m}$
 - (b) Rate of change of speed $=\frac{8}{4}=2 m s^{-2}$

Total distance = 156(c)

 $\frac{1}{2}(v+8)(8) + 10(8) = 156$ 4(v+8) + 80 = 1564v + 32 + 80 = 1564v = 44v = 11

11 (a) Speed = 20 m s⁻¹ (b) Rate of change of speed $= \frac{20}{6} = 3\frac{1}{3} m s^{-2}$ (c) Total distance travelled by motorcycle P $= \frac{1}{2} \times T \times 20$ = 10TTotal distance travelled by motorcycle Q $= \frac{1}{2}(6)(20) + 20(T-6)$ = 60 + 20T - 120 = 20T - 60 20T - 60 - 10T = 30 10T = 90T = 9

12 (a) Uniform speed = 25 m s⁻¹ (b) Rate of change of speed = $\frac{25-10}{5} = 3$ m s⁻² (c) Total distance = 212.5 m $\frac{1}{2}(10+25)(5)+25(t-5)=212.5$ $\frac{175}{2}+25t-125=212.5$ 175+50t-250=425 50t=500t=10 13 (a) Distance travelled at a uniform speed $= 2 \times 12 = 24$ m (b) Rate of change of speed $=\frac{12}{4}=3$ m s⁻² (c) Distance travelled in the first 4 seconds $=\frac{1}{2}(4)(12) = 24 \text{ m}$ Distance travelled from the 6th second to the t^{th} second= $\frac{1}{2}(12+20)(t-6)$ = 16(t-6)= 16t - 96Hence, $24 = \frac{1}{3}(16t - 96)$ 72 = 16t - 9616t = 168t = 10.514 (a) Distance travelled by the car $=\frac{1}{2}(6)(30)+\frac{1}{2}(30+10)(4)=170$ m Distance travelled by the motorcycle $=\frac{1}{2}(10)(10)=50$ m Difference of distance = 170 - 50 = 120 m(b) Rate of change of speed $=\frac{30}{6}=5 \text{ m s}^{-2}$ (c) Gradient along the straight-line OP $\frac{v}{12} = \frac{10}{10}$ v = 12

4

Summative Practice 7

Multiple Choice Questions

- 1 Speed = $\frac{120 70}{0.5} = 100 \text{ h}^{-1}$ Answer: D
- **2** Average speed = $\frac{60 + 120}{30} = 6 \text{ m s}^{-1}$ Answer: C
- 3

Distance = 260 m

$$\frac{1}{2}(9+16)(t) + (18-t)(16) = 260$$

 $\frac{25}{2}t + 288 - 16t = 260$
 $25t + 576 - 32t = 520$
 $-7t = -56$
 $t = 8$

Answer: C

- 4 Total distance = $\frac{1}{2}(6)(8) + \frac{1}{2}(8+24)(4) + 5(24)$
 - = 208 m *Answer*: C

5 Rate of change of speed = $-\frac{11-3}{5} = -\frac{8}{5}$ m s⁻² Answer: C

Structured Questions

1 (a) (i) Distance between Abidin's house and the cake shop = 5 km (ii) Distance between the cake shop and the public library = 12 - 5 = 7 km (b) (i) Speed = $\frac{5}{\frac{15}{60}} = 20$ km h⁻¹ (ii) Speed = $\frac{12 - 5}{\frac{45 - 15}{60}} = 14$ km h⁻¹ (c) Average speed = $\frac{12}{\frac{45}{60}} = 16$ km h⁻¹ (b) Gradient = $-\frac{25}{13 - 5} = -3\frac{1}{8}$ Speed = $3\frac{1}{8}$ m s⁻¹ (c) Distance = 25 m

(d) Average speed =
$$\frac{50}{13} = 3\frac{11}{13}$$
 m s⁻¹

3 (a)
$$h = 3 - 1.75 = 1.25$$
 jam = 75 minutes
(b) $k = 5.5 - 4 = 1.5$ jam = 90 minutes
(c) Distance = 90 - 50 = 40 km
(d) (i) Speed = $\frac{50}{1.75} = 28\frac{4}{7}$ km h¹
(ii) Speed = $\frac{90 - 50}{1} = 40$ km h⁻¹
(iii) Gradient = $-\frac{90}{2} = -45$
Speed = 45 km h⁻¹
(e) Average speed = $\frac{180}{7.5} = 24$ km h⁻¹
4 (a) (i) $m = 80, n = 75$
(ii)
Distance (km)
150
 $m = 80$

(b) Average speed =
$$\frac{150}{\frac{120}{60}} = 75 \text{ km h}^{-1}$$

45

► Time (min)

5 (a) Selva won the race (b) 36 - 18 = 18 seconds (c) 200 - 140 = 60 m (d) Aishah's average speed $= \frac{200}{40} = 5$ m s⁻¹

6 (a) Rate of change of speed = 60 km h⁻¹ $\frac{110 - u}{0.5} = 60$ 110 - u = 30 u = 80(b) Distance travelled at uniform speed = 66 km 110(k - 0.5) = 66 110k - 55 = 66 k = 1.1(c) Total distance = $\frac{1}{2}(80 + 110)(0.5) + 66 + \frac{1}{2}(0.4)(110)$ = 47.5 + 66 + 22 = 135.5 km Average speed = $\frac{135.5}{1.5} = 90\frac{1}{3}$ km h⁻¹

7 (a) Rate of change of speed = 1.5 m s⁻²

$$\frac{v-6}{4} = 1.5$$

$$v-6 = 6$$

$$v = 12$$
(b) Total distance = 122 m

$$\frac{1}{2}(6+v)(4) + 8v = 122$$

$$12 + 2v + 8v = 122$$

$$10v = 110$$

$$v = 11$$

8 (a) Rate of change of speed = 1.2 m s⁻² $\frac{v-8}{10} = 1.2$ v-8 = 12 v = 20(b) Total distance = 184 $\frac{1}{2}(8+v)(10) + \frac{1}{2}(6)(v) = 184$ 40 + 5v + 3v = 184 8v = 144 v = 18

9 (a) Distance = 120 m $\frac{1}{2}(25+15)(x) = 120$ 20x = 120 x = 6(b) Rate of change of speed = 3 m s⁻¹ $\frac{v-15}{10-x} = 3$

 $\frac{v-15}{10-6} = 3$ v-15 = 12 v = 27 **10** (a) $\frac{1}{2}(8+v)(4) = \frac{1}{5} \times 14v$ 5(8+v)(4) = 2(14v)160 + 20v = 28v8v = 160v = 20(b) Total distance $=\frac{1}{2}(8+20)(4)+14(20)$ = 56 + 280=336 m Average speed $=\frac{336}{18}=18\frac{2}{3}$ m s⁻¹ 11 (a) Rate of change of speed = -3 m s^{-2} $-\frac{30-u}{4} = -3$ 30 - u = 12u = 18(b) Distance travelled at uniform speed = 18(2)= 36 m (c) Total distance $=\frac{1}{2}(30+18)(4)+36+\frac{1}{2}(18)(6)$ =186 m

Average speed = $\frac{186}{12}$ = 15.5 m s⁻¹

6