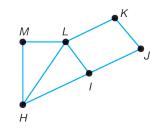

Form 4 Chapter 5 Network in Graph Theory Fully-Worked Solutions

UPSKILL 5.1a

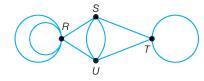

1

(a)
$$V = \{P, Q, R, S, T, U\}$$

 $n(V) = 6$

$$n(E) = 5$$

(c) $\sum d(v) = 2 \times n(E) = 2 \times 5 = 10$

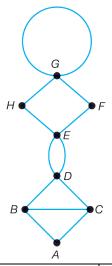

2

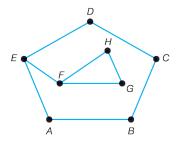
(a)
$$V = \{H, I, J, K, L, M\}$$

 $n(V) = 6$

$$n(E) = 8$$

(c) $\sum d(v) = 2 \times n(E) = 2 \times 8 = 16$

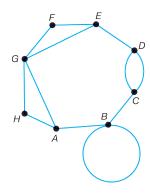

3


(a)
$$V = \{R, S, T, U\}$$

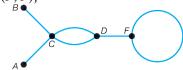
 $n(V) = 4$

$$n(E) = 9$$

(c) $\sum d(v) = 2 \times n(E) = 2 \times 9 = 18$


4

		Graph A
(a)	Is the graph a simple graph?	No
(b)	Degree of the vertex A	2
(c)	Degree of the vertex <i>B</i>	3
(d)	Degree of the vertex C	3
(e)	Degree of the vertex D	4
(f)	Degree of the vertex E	4
(g)	Degree of the vertex F	2
(h)	Degree of the vertex G	4
(i)	Degree of the vertex H	2
(j)	Number of edges	12
(k)	Sum of degrees	24

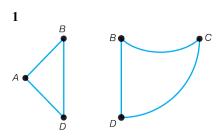


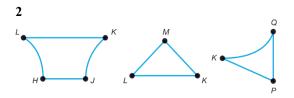
	Graph B
Is the graph a simple graph?	Yes
Degree of the vertex A	2
Degree of the vertex <i>B</i>	2
Degree of the vertex C	2
Degree of the vertex D	2
Degree of the vertex E	3
Degree of the vertex F	3
Degree of the vertex G	2
Degree of the vertex H	2
Number of edges	9
Sum of degrees	18

		Graph C
(a)	Is the graph a simple graph?	No
(b)	Degree of the vertex A	3
(c)	Degree of the vertex <i>B</i>	4
(d)	Degree of the vertex C	3
(e)	Degree of the vertex D	3
(f)	Degree of the vertex E	3
(g)	Degree of the vertex F	2
(h)	Degree of the vertex G	4
(i)	Degree of the vertex H	2
(j)	Number of edge	12
(k)	Sum of degrees	24

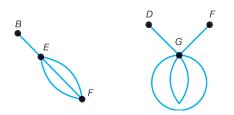
5
$$V = \{A, B, C, D, E\}$$

 $E = \{(A, C), (B, C), (C, D), (C, D), (D, F), (F, F)\}$

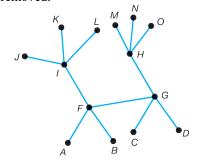


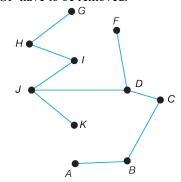

- (a) n(V) = 5
- (b) n(E) = 6
- (c) $\sum d(v) = 2 \times n(E) = 2 \times 6 = 12$

UPSKILL 5.1b

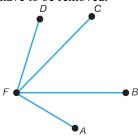

- (b) Not a directed graph
- 2 (a) Weighted graph
 - (b) Not a directed graph

UPSKILL 5.1c

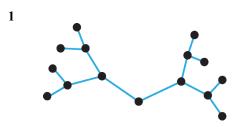


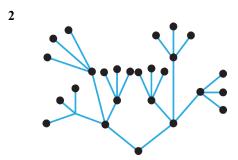

A C C B

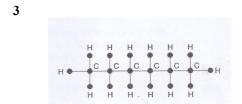
- 4 (a) It is not a tree because:
 - (i) there is a cycle FGHI.
 - (ii) n(V) = 14 and n(E) = 14. It does not satisfy n(V) n(E) = 1.
- (b) Extra one edge. The edge *HI* has to be removed.


- 5 (a) It is not a graph because:
 - (i) there are cycles ABCJK, JDFIJ and HIFG
 - (ii) n(V) = 10 and n(E) = 12. It does not satisfy n(V) n(E) = 1.
 - (b) Extra three edges. The edges AK, IF and GF have to be removed.

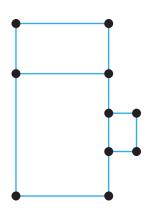
6 (a) It is not a tree because:

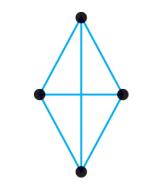

- (i) there are cycles ABF, FBC and FCD
- (ii) n(V) = 5 and n(E) = 7. It does not satisfy n(V) n(E) = 1.

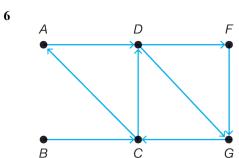

(b) Extra three edges. The edges *DC*, *CB* and *AB* have to be removed.



- 7 Yes because all the three properties are satisfied:
- (i) any two vertices are linked by exactly one edge.
- (ii) there are no cycles.
- (iii) n(V) = 14 and n(E) = 13. Hence, the condition n(E) = n(V) 1 is satisfied.
- **8** Not a tree because there are multiple edges between two Cs. The property of a tree is any two vertices must be linked by exactly one edge.


UPSKILL 5.1d





4

5

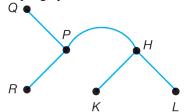
7 (a)
$$A \rightarrow D \rightarrow C$$

(b) $A \rightarrow F \rightarrow E \rightarrow D \rightarrow C$

UPSKILL 5.1e

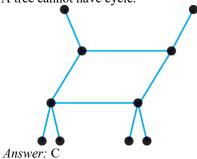
1 (a) Petrol

133 km →
$$\frac{133}{6}$$
 litres
1 litre → 2.20
 $\frac{133}{6}$ $\frac{133}{6} \times 2.20 = \text{RM48.75}$

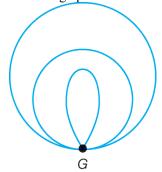

 $Toll = 0.136 \times 133 = RM18.10$

(b) Kota Bahru → Kuala Terengganu → Pulau Redang (Bus followed by ferry)

Summative Practice 5


Multiple-Choice Questions

- 1 Degree of the vertex *A* is 8. *Answer*: B
- **2** The simple graph is



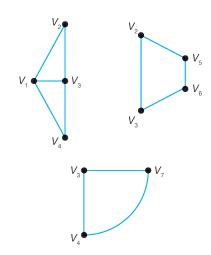
Answer: D

3 A tree cannot have cycle.

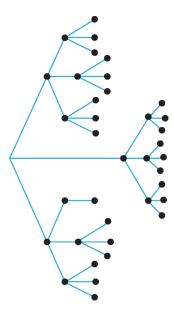
4 The incorrect subgraph is

Answer: D

5 The graphs that represents the given diagram are directed and weighted graph. *Answer*: C


Structured Questions

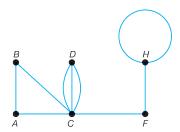
1


(a)	Is the graph a	Yes
(a)	connected graph?	
(b)	Is the graph a simple	No
(0)	graph?	110
(c)	Degree of the vertex A	4
(d)	Degree of the vertex <i>B</i>	8
(e)	Degree of the vertex <i>C</i>	4
(f)	Degree of the vertex D	6
(g)	Degree of the vertex E	4
(h)	Degree of the vertex F	4
(i)	Degree of the vertex <i>G</i>	2
(j)	Total number of edges	16
(k)	Sum of degrees	32

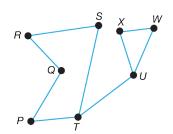
- 2 (a) Directed (b) Not directed
- 3 (a) Weighted (b) Not weighted

4

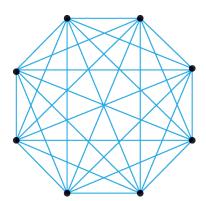
5



6 n(V) = 6 n(E) = 8


Extra three edges

7


8 (a)

- (b) (i) There are two cycles, PQRST and UWX.
 - (ii) n(V) = 8, n(E) = 9The condition n(V) - 1 = n(E) is not satisfied.
- (c) Extra two edges. The edges *PR* and *XW* have to be removed.

9

10 The graph that can be used to represent the food chain is a directed graph.