Form 5 Chapter 4 Permutation and Combination Fully-Worked Solutions

UPSKILL 4.1a

1 The number of ways a person can travel from town *A* to town *C* via town *B*

 $= 2 \times 5 = 10$

2 The number of ways a person can travel from Butterworth to Kuala Lumpur via Ipoh by taking a bus

 $= 4 \times 5 = 20$

- 3 The number of different ways Puan Tan can match her blouse, gowns and shoes
 = 5×4×2
 - = 3 4 4

UPSKILL 4.1b

1 (a) $3! = 3 \times 2 \times 1 = 6$

(b) 5! 3!
=
$$(5 \times 4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1)$$

= 120 × 6
= 720

(c)
$$0! 4!$$

= 1×(4×3×2×1)
= 24

(d)
$$\frac{7!}{4!} = 7 \times 6 \times 5 = 210$$

(e)
$$\frac{9!}{5!} = 9 \times 8 \times 7 \times 6 = 3\ 024$$

(f)
$$\frac{n!}{(n-2)!}$$

= $\frac{n(n-1)(n-2)...}{(n-2)...}$
= $n(n-1)$

(g)
$$\frac{n!0!}{(n-1)!}$$

= $\frac{n(n-1)...}{(n-1)...}$
= n

(h)
$$\frac{3!(n+1)!}{2!n!}$$

= $\frac{3 \times 2 \times 1 \times (n+1)(n) \dots}{2 \times 1 \times (n \dots)}$
= $3(n+1)$

- 2 The number of ways to arrange 6 books = 6! = 720
- **3** The number of ways 7 different presents can be given to 7 children = 7!
 - = 5 040
- **4** The number of ways 4 girls and 2 boys can be seated in a row that consists of 6 chairs
 - = 6! = 720
 - -
- **5** The number of 5-digit numbers that can be formed = 5!
 - = 120
- 6 The possible number of pairs
 - $= 5 \times 4$ = 20
- 7 (a) (i) The number of different arrangements = 5! = 120
 - (ii) The number of different arrangements= 6!= 720
 - (iii) The number of different arrangements = 8! = 40 320
 - (b) (i) <u>0</u>____ ... 4!

The number of different arrangements = 4!×2 = 48

(ii) <u>0</u>_____...5!

The number of different arrangements = 5! × 2 = 240

(iii) <u>I</u>_____...7! <u>U</u>_____...7! <u>A</u>_____...7! <u>E</u>_____7! The number of different arrangements $= 7! \times 4$ = 20 160 **8** _ _ _ <u>4</u> ... 3! <u>___6</u>...3! The number of 4-digit even numbers that can be formed $= 3! \times 2$ = 6 **9** _ _ _ <u>1</u> ... 3! ___<u>7</u>... 3! The number of 4-digit odd numbers that can be formed $= 3! \times 2$ = 12 **10** <u>3</u> _ _ _ ... 3! 4___.3! The number of 4-digit numbers that exceed 3 000 that can be formed

$$= 3! \times 2$$

= 12

11 (a) The number of arrangements

$$=\frac{6!}{2!}=360$$

(b) The number of arrangements

$$=\frac{6!}{2!\ 2!}=180$$

12 The number of arrangements

$$\frac{11!}{2!2!2!} = 4\,989\,600$$

UPSKILL 4.1c

```
1 The number of ways five people can sit
around a circular table
= (5-1)!
= 24
2 ______
2 ______
2 ______
-______
-_______
-_______
The number of four-digit odd numbers
```

$$= {}^{6}P_{3} \times 4$$
$$= 480$$

3 The number of different numbers that can be formed

$$= {}^{6}P_{1} + {}^{6}P_{2} + {}^{6}P_{3} + {}^{6}P_{4} + {}^{6}P_{5} + {}^{6}P_{6}$$

= 1 956

4 The number of three-digit numbers that that can be formed

$$= {}^{5}P_{3}$$

= 60
5 _____2 ... 5!
_____4 ... 5!
_____6 ... 5!
_____8 ... 5!

The number of five -digit even numbers that can be formed = ${}^{8}P_{4} \times 4 = 6$ 720

6 The number of different number that that can be formed $= {}^{5}P_{1} + {}^{5}P_{2} + {}^{5}P_{3} + {}^{5}P_{4} + 5P_{5}$

$$= {}^{3}P_{1} + {}^{3}P_{2} + {}^{3}P_{3} + {}^{3}P_{4} + 5P_{3}$$

= 325

7 (a) (i) The number of arrangements

$$= {}^{5}P_{3}$$

= 60
(ii) The number of arrangements
= ${}^{8}P_{3}$
= 336

(b) (i)
$$\underline{O}_{--}$$

 \underline{E}_{--}
The number of arrangements
 $= {}^{4}P_{2} \times 2$
 $= 24$
(ii) $\underline{U}_{--} \dots {}^{7}P_{2}$
 $\underline{A}_{--} \dots {}^{7}P_{2}$
The number of arrangements
 $= {}^{7}P_{2} \times 2$
 $= 84$
Two children at
the left of the
table.
8 ${}^{4}P_{2} \times 6! + {}^{4}P_{2} \times 6!$
Two children at
the right of the
table.
9 ${}^{5}P_{3} \times 7! + {}^{5}P_{3} \times 7!$
 $= 604\ 800$
Three children at
the right of the
table.
Three children at
the right of the

The number of arrangements $= 5! \times 4!$

- = 2 880
- (b) If the four men want to be seated together, they will be counted as 1 object. Together with 5 ladies, there are 6 objects.

This gives 6!.

But the 4 men can also be arranged among themselves in their group.

This gives 4!.

Using the multiplication rule, the number of arrangements = $6! \times 4!$ = $17\ 280$ **11** L \downarrow L \downarrow L \downarrow L

> If the ladies and men want to be seated alternately, the possible number of arrangements = 4! ×3! = 144

- 144
- **12** If 3 girls want to be seated together, they are counted as 1 object. Together with four boys 4, there are 5 objects.

This gives 5!.

But the 3 girls can also be arranged among themselves in their group.

This gives 3!.

Using the multiplication rule, the number of arrangements = $5! \times 3!$ = 720

- **13** The possible number of arrangements = $3! \times 5! \times 4! \times 3!$ = 103 680
- 14 The possible number of arrangements = $3! \times 6! \times 4! \times 2!$ = 207 360
- **15** If the 4 vowels are to be together, they will be counted as 1 object. Together with the 4 consonants, there are 5 objects.

© EPH Publishing (M) Sdn. Bhd. (473626-T) 2021

EXCEL Additional Mathematics SPM

This gives $\frac{5!}{2!} = 60$

But the 4 vowels can also be arranged among themselves in their group.

Using the multiplication rule, the number of arrangements = 60×12 = 720

16 The number of arrangements if no restriction is imposed

$$=\frac{7!}{2!2!}=1260$$

If the letters O and E have to be adjacent to each other, they will be counted as 1 object. Together with the other 5 letters, there are 6 object.

This gives
$$\frac{1}{2!2!} = 180$$

But *O* and *E* can also be arranged among themselves.

$$\left(\begin{array}{cc} O & E \\ & \sqrt{} & \sqrt{} \end{array}\right)$$

This gives 2! = 2.

Using the multiplication rule, the number of arrangements = 180×2 = 360 17 The number of arrangements if no restriction is imposed

$$= \frac{13!}{2! \; 3! \; 2!} = 259 \; 459 \; 200$$

If 5 vowels have to be together, they will be counted as 1 object. Together with the 8 consonants, there are 9 objects.

But the 5 vowels can also be arranged among themselves in their group.

$$\left[\begin{array}{cccc} E & E & A & I & O \\ \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} \end{array}\right]$$

This gives
$$\frac{5!}{2!} = 60.$$

Using the multiplication rule, the number of arrangements = $15\ 120 \times 60$ = 907 200

UPSKILL 4.2

1 (a)
$${}^{9}C_{5} = \frac{9!}{5! \times (9-5)!} = 126$$

(b) ${}^{8}C_{3} = \frac{8!}{3! \times (8-3)!} = 56$
(c) ${}^{6}C_{4} = \frac{6!}{4! \times (6-4)!} = 15$
(d) ${}^{10}C_{6} = \frac{10!}{6! \times (10-6)!} = 210$

- 3 The number of pairs of double table tennis players that can be formed = ${}^{8}C_{2} = 28$
- 4 (a) The number of combinations to answer 6 questions = ${}^{9}C_{6} = 84$
 - (b) The number of combinations to answer 6 questions = ${}^{5}C_{4} \times {}^{4}C_{2} = 30$
- **5** The number of different committees that can be formed
 - $= {}^{9}C_{5} \times {}^{7}C_{4}$ = 4 410
- 6

HOT	TIPS					
Three	points	on	a	straight	line	cannot
form a	triangl	e.				

The number of triangles that can be formed = ${}^{10}C_3 - {}^4C_3 - {}^6C_3 = 120 - 4 - 20 = 96$

- 7 (a) The number of different committees that can be formed
 - $= {}^{1}C_{1} \times {}^{12}C_{6}$ = 924
 - (b) The number of different committees that can be formed

$$= {}^{8}C_{5} \times {}^{5}C_{2}$$

= 560

(c)			
	Male	Female	Number of ways
Available	8	5	
	4	3	${}^{8}C_{4} \times {}^{5}C_{3}$
Required	3	4	${}^{8}C_{3} \times {}^{5}C_{4}$
nequirea	2	5	${}^{8}C_{2} \times {}^{5}C_{5}$
	1	6	Impossible
	0	7	Impossible

The number of different committees that can be formed

$$= {}^{8}C_{4} \times {}^{5}C_{3} + {}^{8}C_{3} \times {}^{5}C_{4} + {}^{8}C_{2} \times {}^{5}C_{5}$$

= 700 + 280 + 28
= 1 008

8 (a) The number of different ways to form the group

$$= {}^{12}C_5 \times {}^{10}C_7$$

= 95 040

(b) The number of different ways to form the group

$$= {}^{9}C_{4} \times {}^{13}C_{8}$$

= 162 162

(c) The number of different ways to form the group = ${}^{4}C_{3} \times {}^{5}C_{3} \times {}^{6}C_{3} \times {}^{7}C_{3}$

$$= 28\ 000$$

9 (a) The number of different committees that can be formed

$$= {}^{10}C_6$$

= 210

(b)			
	Teacher	Student	Number of ways
Available	4	6	
	2	4	${}^{4}C_{2} \times {}^{6}C_{4}$
Required	1	5	${}^{4}C_{1} \times {}^{6}C_{5}$
	0	6	${}^{4}C_{0} \times {}^{6}C_{6}$

The number of different committees that can be formed

$$= {}^{4}C_{2} \times {}^{6}C_{4} + {}^{4}C_{1} \times {}^{6}C_{5} + {}^{4}C_{0} \times {}^{6}C_{6} = 90 + 24 + 1 = 115$$

10 The number of different choices = ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4} + {}^{6}C_{5} + {}^{6}C_{6}$ = 63

Summative Practice 4

- 1 The number of ways to choose the team $= 5 \times 6$
 - = 30
- 2 The number of permutations
 - = 6! = 720
 - 720
- **3** <u>3</u>__1 ... 2!
 - 4 _ _ <u>1</u> ... 2!
 - 4 _ _ 3 ... 2!

The number of four-digit odd numbers that are greater than 3 000 that can be formed = $2! \times 3$ = 6

4 (a) The number of six--digit numbers that can be formed = 6! = 720

(b) (i)
$$5_{---} \dots 5!$$

6 _____ ... 5!

The number of numbers that are greater than 500 000 = $5! \times 2$ = 240

(ii) 1____1...4!

The number of even numbers that are less than 200 000 = $4! \times 3$ = 72 **5** <u>5</u> ... ${}^{4}P_{3}$ <u>6</u> ... ${}^{4}P_{3}$ 7 ... ${}^{4}P_{3}$

The number of four-digit numbers that are smaller than 8 000

$$= {}^{4}P_{3} \times 3$$
$$= 72$$

6 <u>*E*</u>____ ... ${}^{5}P_{3}$

$$I_{---} \dots {}^{5}P_{3}$$

$$\underline{U}_{___} \dots {}^5P_3$$

The number of arrangements

$$= {}^{5}P_{3} \times 3$$

= 180

7 The prime numbers are 2, 3, 5 and 7.

2	3!
<u>3</u>	3!
<u>5</u>	3!

The number of four-digit numbers that are less than 6 000 = $3! \times 3$ = 18

The number of different arrangements = ${}^{4}P_{1} \times {}^{4}P_{1} \times 6!$

$$= P_1 \times P$$
$$= 11520$$

9 (a) The number of arrangements if no restriction is imposed

$$=\frac{10!}{5!\ 2!}=15\ 120$$

(b) If 5 vowels have to be together, they are counted as 1 object. Together with the 7 consonants, there are 8 objects.

But the 5 vowels can also be arranged among themselves in their group.

This gives
$$\frac{3!}{2!} = 3$$
.

Using the multiplication rule, the number of arrangements = 336×3 = 1 008

- **10** The number of ways 3 books can be chosen from 8 books = ${}^{8}C_{3} = 56$
- 11 The number of teams that can be formed = ${}^{8}C_{5} \times {}^{6}C_{4}$ = 840
- **12** (a) The number of triangles that can be formed
 - $= {}^{8}C_{3} {}^{6}C_{3}$ = 36
 - (b) The number of triangles (with point *B* only)
 - $= {}^{6}C_{2} = 15$

The number of triangles (with points *A* and *B*) = ${}^{6}C_{1} = 6$ The total number of triangles

$$= 15 + 6$$

- 13 The number of ways the team can be formed = ${}^{8}C_{4} \times {}^{4}C_{3} \times {}^{10}C_{4}$
 - $= 64^{\circ}$ C = 58800
- 14 Number of combinations to invite colleagues

$$= {}^{2}C_{2} \times {}^{10}C_{6}$$

= 210

15 Number of combinations for the travelling plan

$$= {}^{1}C_{1} \times {}^{10}C_{4} \times {}^{6}C_{6}$$

= 210

- **16** The total number of ways of selections = ${}^{10}C_3 \times {}^7C_5 \times {}^2C_2$ = 2 520
- **17** (a) The number of ways the committees can be formed

$$= {}^{15}C_6$$

= 1 716

(b) The number of ways the committees can be formed $={}^{7}C_{2}\times{}^{6}C_{2} + {}^{7}C_{2}\times{}^{6}C_{2}$

$$= {}^{\prime}C_{3} \times {}^{6}C_{3} + {}^{\prime}C_{4} \times {}^{6}C_{2}$$

= 1 225

18 (a) The number of ways the presents can be wrapped

$$= {}^{5}C_{2} \times {}^{7}C_{4}$$
$$= 350$$

(1-)

(D)			
	Stationery	Story books	Number of ways
Available	5	7	
	3	3	${}^{5}C_{3} \times {}^{7}C_{3}$
Required	4	2	${}^{5}C_{4} \times {}^{7}C_{2}$
	5	1	${}^{5}C_{5} \times {}^{7}C_{1}$
	6	0	Impossible

$$= {}^{5}C_{3} \times {}^{7}C_{3} + {}^{5}C_{4} \times {}^{7}C_{2} + {}^{5}C_{5} \times {}^{7}C_{1}$$

= 350 + 105 + 7
= 462

19 (a) The number of arrangements

$$= {}^{5}P_{3}$$

= 60

(b) The number of combinations = ${}^{5}C_{2}$ = 10

20 (a) The number of teams that can be

formed = ${}^{10}C_3$ = 120

(b)

	Teacher	Student	Number of ways
Available	4	6	
	2	1	${}^{4}C_{2} \times {}^{6}C_{1}$
Required	1	2	${}^{4}C_{1} \times {}^{6}C_{2}$
	0	3	${}^{4}C_{0} \times {}^{6}C_{3}$

The number of teams

$$= {}^{4}C_{2} \times {}^{6}C_{1} + {}^{4}C_{1} \times {}^{6}C_{2} + {}^{4}C_{0} \times {}^{6}C_{3} = 36 + 60 + 20 = 116$$