

PERMUTATION AND COMBINATION

Multiplication Rule

If an event can happen in r different ways and another event can happen in s different ways, then the number of ways these successive events can happen is $r \times s$, i.e. rs.

Permutations

 The number of permutations of n different objects, taken all at a time, is n!, where

$$n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$$

 The number of permutations of n different objects, taken r at a time, is ⁿP_r, where

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- The number of permutations of n different objects arranged in a circle is (n − 1)!
- The number of permutations of n objects with n₁ of identical objects of type 1, n₂ of identical objects of type 2, ..., n_p of identical objects of

type
$$p$$
, is $\frac{n!}{n_1! n_2! \dots n_p!}$

Combinations

 The number of combinations of r objects, chosen from n different objects, is ⁿC_r, where

$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

• If ${}^{n}C_{h} = {}^{n}C_{k}$, then h + k = n