Fully-Worked Solutions

Divide all the terms by 24. $\frac{x}{24} + \frac{3y}{24} = \frac{24}{24}$ $\frac{x}{24} + \frac{y}{8} = 1$ -4x + y = -16Divide all the terms by -16. $\frac{-4x}{-16} + \frac{y}{-16} = \frac{-16}{-16}$ $\frac{x}{4} + \frac{y}{(-16)} = 1$ -7x + 2y = 14Divide all the terms by 14. $\frac{-7x}{14} + \frac{2y}{14} = \frac{14}{14}$ $-\frac{x}{2} + \frac{y}{7} = 1$ 2x + 3y = 183y = -2x + 18Divide every term by 3. $y = -\frac{2}{3}x + 6$ -10x + 3y = 303y = 10x + 30Divide every term by 3. $y = \frac{10}{3}x + 10$ 3x - 8y = 12-8y = -3x + 12Divide all the terms by -8. $y = \frac{3}{8}x - \frac{3}{2}$ 2x + 7y = 28Divide every term by 28. $\frac{x}{14} + \frac{y}{4} = 1$ -5x + 4y = 20Divide every term by 20. $\frac{x}{-4} + \frac{y}{5} = 1$ 11x - 6y = 66Divide every term by 66. $\frac{x}{6} + \frac{y}{(-11)} = 1$ Substitute x = 2 and y = 7 into the equation y = 2x + 4. = 8 (not equal to the left side) Substitute x = -3 and y = 10 into the equation y = -3x + 1.

x + 3y = 24

© EPH Publishing (M) Sdn. Bhd. (199801017497) 2024

= 10 (is equal to the left side)

1

(c) (-15, 0); $y = \frac{1}{5}x + 3$ Substitute x = -15 and y = 0 into the equation $y = \frac{1}{5}x + 3$. The left side, y = 0The right side, $\frac{1}{5}x + 3 = \frac{1}{5}(-15) + 3$ = 0 (equal to the left side) Therefore, (-15, 0) lies on $y = \frac{1}{5}x + 3$. 7 y = 4x + p 2 = 4(3) + p 2 = 12 + p p = -10 y = 4x - 10 0 = 4q - 1010 = 4q

UPSKILL 9.1B

q = 2.5

 $m_1 = 5$ 1 (a) y = 5x + 1and y + 5x = 0y = -5x $m_2 = -5$ $m_1 \neq m_2$ \therefore The pair of straight lines is not parallel. (b) y = 3x - 6 $m_1 = 3$ and 2y = 6x + 5 (Divide each term by 2) y = 3x + 2.5 $m_2 = 3$ $m_1 = m_2$... The pair of straight lines is parallel. (c) x + 6y = 126y = -x + 12 $y = -\frac{1}{6}x + 2$ $m_1 = -\frac{1}{6}$ and $y = -\frac{1}{6}x - 7$ $m_2 = -\frac{1}{6}$ $m_1 = m_2$... The pair of straight lines is parallel. (d) 2y - 14x = 92y = 14x + 9y = 7x + 4.5 $m_1 = 7$ and 3y - 24x = 13y = 24x + 1 $y = 8x + \frac{1}{3}$ $m_2 = 8$ $m_1 \neq m_2$... The pair of straight lines is not parallel. 2 (a) $y = \frac{3}{5}x - 7$ $m_1 = \frac{3}{5}$ and y = 0.6x + 8 $m_2 = 0.6 = \frac{3}{5}$ $m_1 = m_2$... The pair of straight lines is parallel. (b) 3y - 2x = 123y = 2x + 12 $y = \frac{2}{3}x + 4$ $m_1 = \frac{2}{3}$ and $y = -\frac{2}{3}x + \frac{1}{3}$ $m_2 = -\frac{2}{3}$ $m_1 \neq m_2$... The pair of straight lines is not parallel. (c) 2x = 6y - 116y = 2x + 11 $y = \frac{1}{3}x + \frac{11}{6}$ $m_1 = \frac{1}{3}$ and 3y = x + 6 $y = \frac{1}{3}x + 2$ $m_2 = \frac{1}{3}$ $m_1 = m_2$... The pair of straight lines is parallel.

(d) 8x + 4y = 324y = -8x + 32y = -2x + 8 $m_1 = -2$ and 6x - 2y = 3-2y = -6x + 3 $y = 3x - \frac{3}{2}$ $m_2 = 3$ $m_1 \neq m_2$... The pair of straight lines is not parallel. 3 (a) y = -5x + 2 $m_1 = -5$ and y + hx = 10y = -hx + 10 $m_{2} = -h$ $m_1 = m_2$ $-\dot{5} = -h$ $\therefore h = 5$ (b) 4x + 5y = 65y = -4x + 6 $y = -\frac{4}{5}x + \frac{6}{5}$ $m_1 = -\frac{4}{5}$ and 3x + hy = 8hy = -3x + 8 $y = -\frac{3}{h}x + \frac{8}{h}$ $m_2 = -\frac{3}{h}$ $m_1 = m_2$ $-\frac{4}{5} = -\frac{3}{h}$ $\therefore h = \frac{15}{4}$ (c) $\frac{x}{4} + \frac{y}{2} = 1$ $\frac{y}{2} = -\frac{x}{4} + 1$ $y = -\frac{1}{2}x + 2$ $m_1 = -\frac{1}{2}$ and 6y - hx = 206y = hx + 20 $y = \frac{h}{6}x + \frac{10}{3}$ $m_2 = \frac{h}{6}$ $-\frac{1}{2} = \frac{h}{6}$ $h = -\frac{1}{2} \times 6$ = -3(d) x + 6y - 5 = 06y = -x + 5 $y = -\frac{1}{6}x + \frac{5}{6}$ $m_1 = -\frac{1}{6}$ and $\frac{x}{h} - \frac{y}{9} = 1$ $\frac{y}{9} = \frac{x}{h} - 1$ $y = \frac{9}{h}x - 9 \qquad m_2 = \frac{9}{h}$ $m_1 = m_2$ $-\frac{1}{6} = \frac{9}{h}$ h = -54**4** (a) y = 3(b) y = -2(d) y = 0(c) y = 4(b) x = 2(a) x = 6(d) x = 8(c) x = -4(b) y = 36 (a) y = 7(c) y = -1(d) y = -57 (a) x = 3(b) x = -1(c) x = 10(d) x = -128 (a) Substitute H(1, 3), m = 1 into y = mx + c. 3 = 1 + cc = 2 $\therefore y = x + 2$

(b) Substitute
$$H(6, 4), m = \frac{1}{2}$$
 into $y = mx + c$.
 $4 = \frac{1}{2}(6) + c$
 $4 = 3 + c$
 $c = 1$
 $\therefore y = \frac{1}{2}x + 1$
(c) Substitute $H(-4, 5), m = -6$ into $y = mx + c$.
 $5 = -6(-4) + c$
 $5 = 24 + c$
 $c = -19$
 $\therefore y = -6x - 19$
(d) Substitute $H(-6, -5), m = 0$ into $y = mx + c$.
 $-5 = c$
 $\therefore y = -5$
(e) Substitute $H(\frac{2}{3}, -2), m = -9$ into $y = mx + c$.
 $-2 = -9(\frac{2}{3}) + c$
 $-2 = -6 + c$
 $c = 4$
 $\therefore y = -3x + 4$
(f) Substitute $H(8, 3), m = -\frac{3}{4}$ into $y = mx + c$.
 $3 = -\frac{3}{4}(8) + c$
 $3 = -6 + c$
 $c = 9$
 $\therefore y = -\frac{3}{4}x + 9$
9 (a) (1, 6), (2, 8)
 $m = \frac{8-6}{2-1}$
 $= \frac{2}{1}$
 $= 2$
Substitute $m = 2, x = 1$ and $y = 6$ into $y = mx + c$.
 $6 = 2(1) + c$
 $6 = 2 + c$
 $c = 4$
Substitute $m = 2$ and $c = 4$ into $y = mx + c$.
The equation of the line is $y = 2x + 4$.
(b) (5, 2), (3, 10)
 $m = \frac{10-2}{3-5}$
 $= \frac{8}{-2}$
 $= -4$
Substitute $m = -4, x = 5$ and $y = 2$ into $y = mx + c$.
The equation of the line is $y = -4x + 22$.
(c) $(4, -1), (6, -5)$
 $m = -\frac{5-(-1)}{6-4}$
 $= -\frac{4}{2}$
 $= -2$
Substitute $m = -2, x = 4$ and $y = -1$ into $y = mx + c$.
The equation of the line is $y = -4x + 22$.
(c) $(4, -1), (6, -5)$
 $m = -5 - (c)$
 $m = -5 - (c)$
 $m = -2 and c = 7$ into the equation $y = mx + c$.
The equation of the line is $y = -2x + 7$.

(d) (-5, -3), (-8, 1) $m = \frac{1 - (-3)}{-8 - (-5)}$ $=\frac{4}{3}$ $=-\frac{4}{2}$ Substitute $m = -\frac{4}{3}$, x = -8 and y = 1 into y = mx + c. $1 = -\frac{4}{3}(-8) + c$ $1 = \frac{32}{3} + c$ $c = -\frac{29}{3}$ Substitute $m = -\frac{4}{3}$ and $c = -\frac{29}{3}$ into the equation y = mx + c. The equation of the line is $y = -\frac{4}{3}x - \frac{29}{3}$. **10** (a) *A*(5, 9), *B*(-1, 3) $m = \frac{3-9}{-1-5}$ $=\frac{-6}{-6}$ = 1 Substitute m = 1, x = 5 and y = 9 into y = mx + c. 9 = 1(5) + c9 = 5 + cc = 4Substitute m = 1 and c = 4 into the equation y = mx + c. The equation of the line is y = x + 4. (b) B(-1, 3), C(3, -5) $m = \frac{-5 - 3}{3 - (-1)}$ $=\frac{-8}{4}$ = -2Substitute m = -2, x = -1 and y = 3 into y = mx + c. 3 = -2(-1) + c3 = 2 + cc = 1Substitute m = -2 and c = 1 into the equation y = mx + c. The equation of the line is y = -2x + 1. (c) A(5, 9), C(3, -5) $m = \frac{-5 - 9}{3 - 5}$ $=\frac{-14}{-2}$ = 7 Substitute m = 7, x = 3 and y = -5 into y = mx + c. -5 = 7(3) + c-5 = 21 + cc = -26Substitute m = 7 and c = -26 into the equation y = mx + c. The equation of the line is y = 7x - 26. 11 (a) Substitute m = 3 and Q(2, 10) into y = mx + c. 10 = 3(2) + c10 = 6 + cc = 4Substitute m = 3 and c = 4 into y = mx + c. The equation of PQ is y = 3x + 4. (b) $\frac{x}{2} + \frac{y}{4} = 1$ $m = -\frac{4}{2}$ = -2

Substitute m = -2 and Q(5, 0) into y = mx + c. 0 = -2(5) + c0 = -10 + cc = 10Substitute m = -2 and c = 10 into the equation y = mx + c. The equation of PQ is y = -2x + 10. (c) $m = -\frac{8}{-5} = \frac{8}{5}$ Substitute $m = \frac{8}{5}$ and (4, 1) into y = mx + c. $1 = \frac{8}{5}(4) + c$ $1 = \frac{32}{5} + c$ $1 - \frac{32}{5} = c$ $c = -\frac{27}{5}$ Substitute $m = \frac{8}{5}$ and $c = -\frac{27}{5}$ into the equation y = mx + c.The equation of PQ is $y = \frac{8}{5}x - \frac{27}{5}$ **12** (a) A(2, 1), y = x - 4Gradient of straight line y = x - 4 is 1. Parallel lines have the same gradient. Therefore, m = 1 and point A(2, 1)1 = 1(2) + c1 = 2 + cc = 1 - 2 = -1 $\therefore y = x - 1$ (b) A(-1, 3) y = -4x + 7Gradient of straight line y = -4x + 7 is -4. Parallel lines have the same gradient. Therefore, m = -4 and point A(-1, 3)3 = -4(-1) + c3 = 4 + cc = 3 - 4 = -1 $\therefore y = -4x - 1$ (c) $A(7, -4) \quad y = -\frac{5}{7}x - 2$ Gradient of straight line $y = -\frac{5}{7}x - 2$ is $-\frac{5}{7}$. Parallel lines have the same gradient. Therefore, $m = -\frac{5}{7}$ and point A(7, -4) $-4 = -\frac{5}{7}(7) + c$ -4 = -5 + cc = -4 + 5= 1 $\therefore y = -\frac{5}{7}x + 1$ (d) A(9, 0), 3y - x = 53y - x = 53y = x + 5 $y = \frac{1}{3}x + \frac{5}{3}$ Gradient is $\frac{1}{3}$ Parallel lines have the same gradient. Therefore, $m = \frac{1}{3}$ and point A(9, 0) $0 = \frac{1}{3}(9) + c$ 0 = 3 + cc = -3 $\therefore y = \frac{1}{2}x - 3$

(e) A(-2, -5), 2x - y = 82x - y = 82x - 8 = yy = 2x - 8Gradient is 2. Parallel lines have the same gradient. Therefore, m = 2 and point A(-2, -5)-5 = 2(-2) + c-5 = -4 + cc = -1 $\therefore y = 2x - 1$ (f) A(0, -2), 3x + 4y - 15 = 03x + 4y = 154y = -3x + 15 $y = -\frac{3}{4}x + \frac{15}{4}$ Gradient is $-\frac{3}{4}$. Parallel lines have the same gradient. Therefore, $m = -\frac{3}{4}$ and point A(0, -2)c = -2 $\therefore y = -\frac{3}{4}x - 2$ UPSKILL 9.1C 1 (a) y = x - 2, y = -x + 44 y = -x + 43 2 (3, 1)1 0 -1-2 \therefore The point of intersection is (3, 1). (b) y = 3 - x, y = -2x + 66 5 4 y = -2x + 63

2

1

0

y = 3 - x

(3, 0)

 \therefore The point of intersection is (3, 0).

2 (a) y = 5x - 2 ...(1) y = -x + 1 ...(2) $(1) - (2): \quad 0 = 6x - 3$ 6x = 3 $x = \frac{1}{2}$ Substitute $x = \frac{1}{2}$ into (2): $y = -\frac{1}{2} + 1$ $=\frac{1}{2}$ \therefore The point of intersection is $\left(\frac{1}{2}, \frac{1}{2}\right)$. (b) y = 3x - 7...(1) y = 5 - 3x ...(2) Substitute (1) into (2): 3x - 7 = 5 - 3x3x + 3x = 5 + 76x = 12x = 2Substitute x = 2 into (1): y = 3(2) - 7= -1: The point of intersection is (2, -1). (c) 3x + 2y = 6...(1) x + y = 4...(2) (2) \times 3: 3*x* + 3*y* = 12 ...(3) (1) - (3): -y = -6y = 6Substitute y = 6 into (2): x + 6 = 4x = 4 - 6 = -2: The point of intersection is (-2, 6). **3** (a) 5 + k = 8k = 8 - 5 = 3(b) x = 3(c) y = -x + 8 $m_{_{CD}} = -1$ AB // CD, therefore $m_{AB} = m_{CD} = -1$ Substitute m = -1 and A(-1, 3) into y = mx + c. 3 = -1(-1) + c3 = 1 + cc = 3 - 1 = 2The equation of straight line *AB* is y = -x + 2. 4 (a) MN = LM = KL = KN = 5 units ON = 3 units $OM = \sqrt{5^2 - 3^2} = 4$ units, M(0, 4) $m_{_{MN}} = -\frac{y\text{-intercept}}{\cdot}$

x-intercept

(b) *L*(5, 4) (c) $m_{KL} = m_{MN} = \frac{4}{3}$ Substitute $m = \frac{4}{3}$ and L(5, 4) into y = mx + c. $4 = \frac{4}{3}(5) + c$ $4 = \frac{20}{3} + c$ $c = 4 - \frac{20}{3} = -\frac{8}{3}$ $\therefore y = \frac{4}{3}x - \frac{8}{3}$ 5 Let the age of Haslina = x and the age of Aishah = yx - y = 6...(1) x + y = 40...(2) (1) + (2): 2x = 46x = 23Substitute x = 23 into equation (2): 23 + y = 40y = 17 6 2x + 2y = 480...(1) y = 2x...(2) Substitute (2) into (1): 2x + 2(2x) = 4806x = 480x = 80Substitute x = 80 into equation (2): y = 2(80)= 1607 Let the marks scored by Pravin = x and the marks scored by Satish = y. x - y = 16...(1) x + y = 170...(2) (1) + (2): 2x = 186x = 93Substitute x = 93 into equation (2): 93 + y = 170y = 170 - 93= 77 8 The cost of a netball = RMx and the cost of a tennis ball = RMyx - y = 8...(1) 4x + 5y = 140...(2) $(1) \times 5: 5x - 5y = 40$...(3) $(2) + (3): \quad 9x = 180$ = 20Substitute x = 20 into equation (1): 20 - y = 8y = 20 - 8= 12 9 (a) x-intercept of JK: $y = 0, \quad 2x - 0 = 5$ x = 2.5: Equation of straight line *KL* is x = 2.5(b) 2x - y = 52x - 5 = yy = 2x - 5 $m_{_{IK}} = m_{_{LM}} = 2$ Substitute m = 2, x = 8 and y = 5 into y = mx + c. 5 = 2(8) + c5 - 16 = cc = -11 \therefore Thus, the equation of straight line *LM* is y = 2x - 11. Substitute y = 0 into y = 2x - 11. 2x - 11 = 0 $x = \frac{11}{2}$ or 5.5 $\therefore x$ -intercept = $\frac{11}{2}$ or 5.5

Summative Practice 9

Section A

1 For *x*-intercept, y = 0 $y = -\frac{2}{5}x + 4$ $0 = -\frac{2}{5}x + 4$ $\frac{2}{5}x = 4$ $x = 4 \times \frac{5}{2}$ = 10 Answer: C 2 4x - 7y = 5x = 3, 4(3) - 7y = 512 - 7y = 5-7y = -7y = 1 \therefore (3, 1) lies on the straight line. Answer: **D 3** Substitute m = 4 and (3, 7) into y = mx + c. 7 = 4(3) + c7 = 12 + c7 - 12 = cc = -5y = 4x - 5Answer: A **4** PQ: 2x + 7y = 57y = -2x + 5 $y = -\frac{2}{7}x + \frac{5}{7}$ 2x = -7y + 67y = -2x + 6RS: $y = -\frac{2}{7}x + \frac{6}{7}$

The straight lines PQ and RS have the same gradient. Thus the two straight lines are parallel. *Answer*: **B**

5 The gradient is 50, for every hour of usage, the charge will increase by RM50.

Answer: **B 6** 3x - 8y = 16

$$3x - 8y = 10$$
$$3x - 16 = 8y$$
$$8y = 3x - 16$$
$$y = \frac{3}{8}x - 2$$

Answer: C

7 M(0, y) and N(6, 10)

$$\frac{y-10}{0-6} = -\frac{1}{3}$$

$$y - 10 = -\frac{1}{3} \times (-6)$$

$$y - 10 = 2$$

$$y = 12$$

$$OM = 12 \text{ units, } LM = 13 \text{ units}$$

$$OL = \sqrt{13^2 - 12^2} = 5 \text{ units}$$

x-intercept of LM is -5.
Answer: **B**
8 5x - 2y = 15
5x - 15 = 2y
2y = 5x - 15

$$y = \frac{5}{2}x - \frac{15}{2}$$

The y-intercept of the straight line is $-\frac{15}{2}$.

© EPH Publishing (M) Sdn. Bhd. (199801017497) 2024

9
$$m = -\frac{y \cdot \text{intercept}}{x \cdot \text{intercept}}$$

 $= -\frac{6}{-3}$
 $= 2$
Answer: D
10 Substitut $m = 3$ and $P(-2, 5)$ into $y = mx + c$.
 $5 = 3(-2) + c$
 $5 = -6 + c$
 $c = 11$
 $y = 3x + 11$
When $x = -1, y = 3(-1) + 11$
 $= 8$
 $\therefore Q(-1, 8)$
Answer: C
11 $m = -\frac{y \cdot \text{intercept}}{x \cdot \text{intercept}}$
 $-\frac{1}{3} = -\frac{-5}{x \cdot \text{intercept}}$
 $x \cdot \text{intercept} = -3 \times 5$
 $= -15$
Answer: B
12 $4x + 8y + 5 = 0$
 $8y = -4x - 5$
 $y = -\frac{1}{2}x - \frac{5}{8}$
Gradient, $m = -\frac{1}{2} = -0.5$
Answer: C
Section B
1 (-3, -5) $y = -2x + 6$
 $(4, -2)$ $(4x - 5y = 13)$
 $(3, -4)$ $y = -6x - 10$
2 (a) (i) $y = 4$
(ii) $x = -2$
(b) (i) False
(iii) True
Section C
1 (a) (i) $y - 4x = 10$
 $y = 4x + 10$
 $y = -10$
Thus, the equation of straight line NP is $y = 10$.
(ii) $m_{MN} = m_{PQ} = 4$
 $y = 4x + c$
 $1 = 4(2) + c$
 $1 - 8 = c$
 $c = -7$
 $\therefore y = 4x - 7$
 $x \cdot \text{intercept} : y = 0$
 $0 = 4x - 7$
 $4x = 7$
 $x = \frac{7}{4}$

 $\therefore x$ -intercept = $\frac{7}{4}$

 $m_{RS} = m_{PO} = -3$

3y = -9x + 8

 $y = -3x + \frac{8}{3}$

(b) (i) 9x + 3y = 8

Substitute
$$m = -3$$
 and $R(-4, -2)$ into $y = mx + c$
 $-2 = -3(-4) + c$
 $-2 = 12 + c$
 $c = -2 - 12$
 $= -14$
 $y = -3x - 14$
(ii) When $y = 0$, $0 = -3x - 14$
 $3x = -14$
 $x = -\frac{14}{3}$
x-intercept $= -\frac{14}{3}$
2 (a) (i) $K(-4, 0), L(0, 8)$
Equation of straight line *LM*: $y = 8$
(ii) $m_{KL} = -\frac{y \cdot \text{intercept}}{x \cdot \text{intercept}}$
 $= -\frac{8}{-4}$
 $= 2$

 $m_{_{MN}}=m_{_{KL}}=2,$

Substitute m = 2 and N(8, 10) into y = mx + c. 10 = 2(8) + c10 = 16 + cc = 10 - 16= -6 y = 2x - 6When y = 0, 0 = 2x - 62x = 6x = 3x-intercept = 3 $2x - \frac{1}{3}y = 8 \qquad \dots(1)$ $3x + y = 21 \qquad \dots(2)$ (1) × 3: 6x - y = 24 \qquad \dots(3) (2) + (3): 9x = 45 (b) x = 5Substitute x = 5 into equation (2): 3(5) + y = 2115 + y = 21y = 6Thus, the point of intersection is (5, 6).