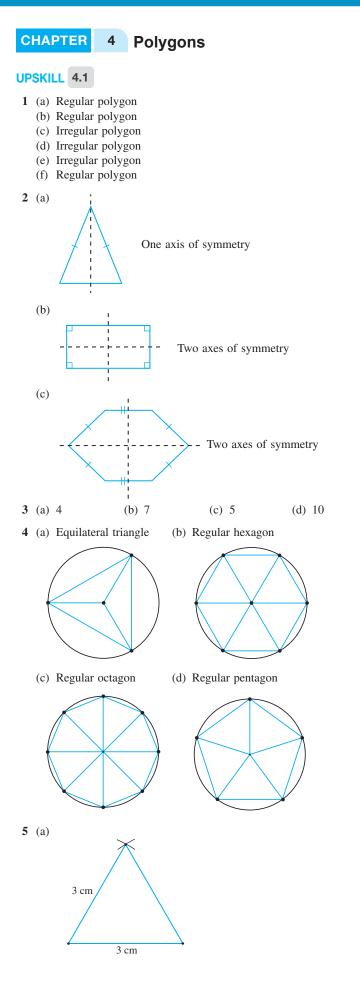
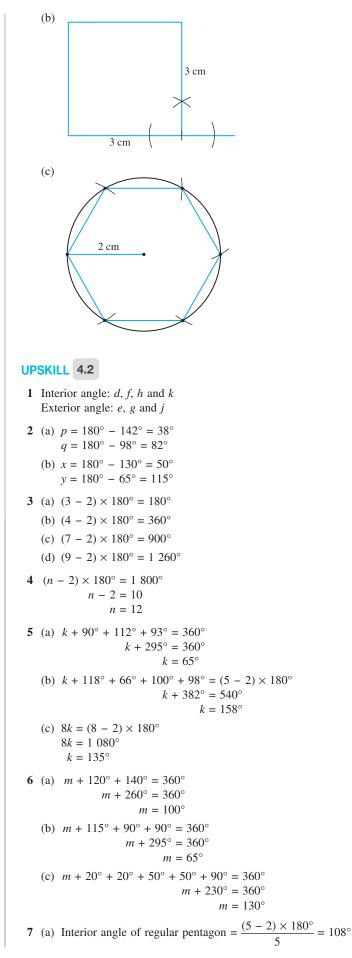
Fully-Worked Solutions





- (b) Interior angle of regular decagon = $\frac{(10-2) \times 180^{\circ}}{10} = 144^{\circ}$
- (c) Interior angle of regular polygon with 12 sides $=\frac{(12-2)\times 180^{\circ}}{12}=150^{\circ}$
- 8 (a) Exterior angle of regular hexagon = $\frac{360^{\circ}}{6} = 60^{\circ}$
 - (b) Exterior angle of regular nonagon = $\frac{360^{\circ}}{0} = 40^{\circ}$
 - (c) Exterior angle of regular polygon with 15 sides $=\frac{360^{\circ}}{15}=24^{\circ}$
- 9 (a) Interior angle = 140° , exterior angle = $180^\circ 140^\circ = 40^\circ$ $n = \frac{360^{\circ}}{40^{\circ}} = 9$
 - (b) Interior angle = 160° , exterior angle = $180^\circ 160^\circ = 20^\circ$ $n = \frac{360^{\circ}}{20^{\circ}} = 18$
 - (c) Exterior angle = 15° $n = \frac{360^\circ}{15^\circ} = 24$
- **10** Let exterior angle = pInterior angle = $3 \times \text{Exterior}$ angle = 3pInterior angle + Exterior angle = 180° $3p + p = 180^{\circ}$

$$4p = 180^{\circ}$$

 $p = 45^{\circ}$

- :. Number of sides of the regular polygon, $n = \frac{360^{\circ}}{45^{\circ}} = 8$
- 11 Exterior angle of regular pentagon

= 360° 5 = 72° $x + 72^{\circ} + 72^{\circ} = 180^{\circ}$ $x + 144^{\circ} = 180^{\circ}$ $x = 36^{\circ}$

- 12 Angle at the centre of a regular hexagon
 - $=\frac{360^{\circ}}{6}$ $= 60^{\circ}$

 $x = 2 \times 60^\circ = 120^\circ$

Summative Practice 4

Section A

- 1 Answer: B
- 2 Number of axes of symmetry for regular nonagon = Number of sides = 9

 - Answer: C
- 3 Answer: D
- 4 Number of triangles formed in 15 sided polygon = 15 2 = 13Answer: **B**
- 5 Sum of the interior angles of a heptagon = $(7 2) \times 180^{\circ}$ $= 900^{\circ}$

Answer: D

- 6 Sum of the exterior angles of a polygon is 360°. Answer: A
- 7 Exterior angle of a regular hexagon $=\frac{360^{\circ}}{1000}$ 6 $= 60^{\circ}$ $x = 180^{\circ} - 60^{\circ} - 60^{\circ}$ S $= 60^{\circ}$ Answer: **D** 60

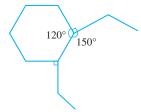
8 Sum of interior angles of pentagon =
$$540^{\circ}$$

 $\angle UQR = \angle QUT = \angle UTS = \frac{540^{\circ} - 90^{\circ} - 90^{\circ}}{3} = 120^{\circ}$
 $x = 180^{\circ} - 120^{\circ} = 60^{\circ}$
Answer: **A**

9 Exterior angle of the regular polygon = $180^{\circ} - 160^{\circ}$ $= 20^{\circ}$

Number of sides of the polygon = $\frac{360^{\circ}}{20^{\circ}} = 18$ Answer: D

10



Interior angle of regular hexagon = 120° Interior angle of the incomplete regular polygon $= 360^{\circ} - 120^{\circ} - 90^{\circ} = 150^{\circ}$ Exterior angle of the incomplete regular polygon $= 180^{\circ} - 150^{\circ} = 30^{\circ}$ Number of sides = $\frac{360^{\circ}}{30^{\circ}} = 12$ Answer: C

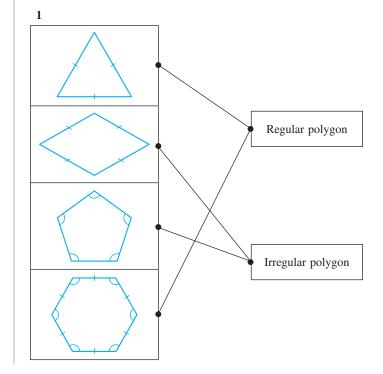
Section B

72°

Q

72°

Т



2 (a) 1 (b) 5 (c) 2 (d) 7	
----------------------------------	--

	Statements	TRUE or FALSE
(a)	The number of axes of symmetry for a polygon is equals to the number of sides of the polygon.	FALSE
(b)	The sum of exterior angles of a pentagon is 360°.	TRUE
(c)	The interior angle of a regular hexagon is 120°.	TRUE
(d)	Rhombus is a regular polygon.	FALSE

4 (a)
$$a + b + c + d + e + f = (6 - 2) \times 180^{\circ}$$

= 720°
(b) $p + q + r + s + t = 360^{\circ}$

Section C

3

1 (a) p = exterior angle of regular octagon

$$=\frac{360^{\circ}}{8}$$

(b) (i) Regular hexagon and regular octagon

(ii) Interior angle of a regular hexagon
=
$$180^{\circ}$$
 - Exterior angle
= $180^{\circ} - \frac{360^{\circ}}{6}$
= 120°
 $\angle QPS = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$
Interior angle of a regular octagon
= $180^{\circ} - \text{Exterior angle}$
= $180^{\circ} - \frac{360^{\circ}}{8}$
= 135°
 $\angle APS = \frac{1}{2} \times 135^{\circ} = 67.5^{\circ}$
 $y = \angle QPS + \angle APS$
= $60^{\circ} + 67.5^{\circ}$
= 127.5°

 $= 180^{\circ} - \frac{360^{\circ}}{2}$ 6 = 120° Interior angle of a regular pentagon = 180° – Exterior angle $= 180^{\circ} - \frac{360^{\circ}}{2}$ 5 $= 108^{\circ}$ $\angle EFR = 120^\circ - 108^\circ = 12^\circ$ $\angle RFC = \angle EFC - \angle EFR$ $= 60^{\circ} - 12^{\circ}$ $= 48^{\circ}$ $\angle QRP = \frac{180^\circ - 108^\circ}{2} = 36^\circ$ $\angle FRP = 108^\circ - 36^\circ = 72^\circ$ $\therefore x = \angle RFC + \angle FRP$ $= 48^{\circ} + 72^{\circ}$ = 120° **2** (a) $x = 180^{\circ} - 160^{\circ} = 20^{\circ}$ $y = 180^{\circ} - 34^{\circ} = 146^{\circ}$ (b) Interior angle of a regular pentagon = 180° – Exterior angle $= 180^{\circ} - \frac{360^{\circ}}{2}$ 5 $= 108^{\circ}$ For quadrilateral ABDE, $108^{\circ} + 108^{\circ} + 90^{\circ} + p = 360^{\circ}$ $p + 306^{\circ} = 360^{\circ}$ $p = 54^{\circ}$

(c) Interior angle of a regular hexagon = 180° – Exterior angle

(c) (i) Let the exterior angle be x, hence the interior angle is 3x.

Interior angle + Exterior angle =
$$180^{\circ}$$

 $3x + x = 180^{\circ}$
 $4x = 180^{\circ}$
 $x = 45^{\circ}$
Number of sides of regular polygon = $\frac{360^{\circ}}{45^{\circ}} = 8$

... The shape of the pool is regular octagon

(ii)
$$Cost = 8 \times 5 \times 12$$

= RM480