Fully-Worked Solutions

CHAPTER 13 Simple Probability

UPSKILL 13.1

1 (a) $\frac{19}{100} = 0.19$

- (b) Not possible to obtain a number '7'. Hence, the probability of such event is 0.
- (c) The event of obtaining a number more than 0 will definitely happen. Hence, the probability of such event is 1.

2 (a) $\frac{72}{150} = 0.48$ (b) 0.5

UPSKILL 13.2

- 1 (a) Red, Blue and Yellow
 - (b) Let *R* represents red ball, *B* represents blue balls and *Y* represents yellow balls
 S = {R, B₁, B₂, Y₁, Y₂, Y₃}

2 (a) Spin 1 Spin 2 Outcome
1
$$(1, 1)$$

1 $(3, 3)$
5 $(1, 3)$
5 $(1, 5)$
1 $(3, 1)$
3 $(3, 3)$
5 $(3, 5)$
5 $(5, 3)$
5 $(5, 5)$

$$\begin{split} S &= \{(1,\,1),\,(1,\,3),\,(1,\,5),\,(3,\,1),\,(3,\,3),\,(3,\,5),\,(5,\,1),\,(5,\,3),\\ &\quad (5,\,5)\} \end{split}$$

Coin Dice Outcome

$$1 \longrightarrow (H, 1)$$

 $2 \longrightarrow (H, 2)$
 $3 \longrightarrow (H, 3)$
 $4 \longrightarrow (H, 4)$
 $5 \longrightarrow (H, 5)$
 $6 \longrightarrow (H, 6)$
 $1 \longrightarrow (T, 1)$
 $2 \longrightarrow (T, 2)$
 $T \longrightarrow (T, 3)$
 $4 \longrightarrow (T, 4)$
 $5 \longrightarrow (T, 5)$
 $6 \longrightarrow (T, 6)$

$$\begin{split} S &= \{(\mathrm{H},\,1),\,(\mathrm{H},\,2),\,(\mathrm{H},\,3),\,(\mathrm{H},\,4),\,(\mathrm{H},\,5),\,(\mathrm{H},\,6),\,(\mathrm{T},\,1),\\ &\quad (\mathrm{T},\,2),\,(\mathrm{T},\,3),\,(\mathrm{T},\,4),(\mathrm{T},\,5),\,(\mathrm{T},\,6)\} \end{split}$$

(c)

(b)

 $S = \{(B, 3), (B, 4), (B, 5), (L, 3), (L, 4), (L, 5), (U, 3), (U, 4), (U, 5), (E, 3), (E, 4), (E, 5)\}$

3 (a)

Dice 1 Dice 2	1	2	3	4	5	6
1	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
2	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
3	(1, 3)	(2, 3)	(3, 3)	(4, 3)	(5, 3)	(6, 3)
4	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
5	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
6	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)

Sample space, S

- $= \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\}$
- (b) (i) $\{(2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5), (5, 2), (5, 3), (5, 5)\}$
 - (ii) $\{(4, 6), (5, 5), (6, 4)\}$

(iii) $\{(1, 5), (2, 6), (5, 1), (6, 2)\}$

4 (a)
$$\frac{30}{150} = 0.2$$

(b) $\frac{30 + 35 + 20 + 25 + 25}{150} = 0.9$

5 (a)
$$\frac{15}{50} = 0.3$$

(b) $\frac{5+8+15}{50} = 0.56$

(c)
$$\frac{6+5+4}{50} = 0.3$$

6 (a)
$$\frac{65}{250} = 0.26$$

(b) $\frac{30}{250} = 0.12$
(c) $\frac{30 + 65 + 45 + 30}{250} = 0.68$

UPSKILL 13.3

- 1 (a) Event A' is not getting a left-handed boy when choosing a student at random from a group of students.
 - (b) Event B' is not getting a multiple of 5 when a number is chosen randomly from the set of two-digit numbers.
 - (c) Event *C*' is not winning the U-15 football tournament at the inter-district level.
- 2 (a) Sample space, $S = \{S, A, M, P, L, E\}$
 - $D = \{A, E\}$

 $\therefore D' = \{S, M, P, L\}$

(b) Sample space, S

 $= \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\}$

$$\begin{split} &E = \{(6, 2), (5, 3), (6, 3), (4, 4), (5, 4), (6, 4), (3, 5), (4, 5), \\ &(5, 5), (6, 5), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\} \\ &\therefore E' = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (1, 2), \\ &(2, 2), (3, 2), (4, 2), (5, 2), (1, 3), (2, 3), (3, 3), \\ &(4, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (1, 6)\} \\ (c) Sample space, S \\ &= \{(H, H, H, H), (H, H, H, T), (H, H, T, H), (H, H, T, T), \\ &(H, T, H, H), (H, T, H, T), (H, T, T, H), (H, H, T, T), \\ &(H, T, H, H), (T, H, H, T), (T, H, T, H), (T, H, T, T), \\ &(T, T, H, H), (T, T, H, T), (T, T, T, H), (T, T, T, T)\} \\ F &= \{(H, H, H, H), (H, H, H, T), (H, T, T, H), (H, T, T, T), \\ &(H, T, H, H), (T, H, H, T), (H, T, T, H), (H, T, T, T), \\ &(H, T, H, H), (T, H, H, T), (H, T, T, H), (H, T, T, T), \\ &(H, T, H, H), (T, H, T, H), (T, H, T, H), (H, T, T, T), \\ &(T, T, H, H), (T, T, T, H), (T, T, T, T)\} \\ W &= event of getting a white ball \\ P(W) &= 1 - \frac{13}{20} \end{split}$$

$$V = 1 - \frac{13}{20}$$

= $\frac{7}{20}$

3

4 P(no rain on sports day)

$$=1-\frac{2}{9}=\frac{7}{9}$$

5 n(S) = 3 + 6 + 9 = 18 $P(\text{not red}) = 1 - \frac{3}{18}$ $= \frac{15}{18}$ $= \frac{5}{6}$

 $6 Sample space, S = \{(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, H), (T, T, H), (T, T, T)\}$ A = event of getting all tails

A' = event of getting at least one head

$$P(A) = \frac{1}{8}$$
$$P(A') = 1 - P(A)$$
$$= 1 - \frac{1}{8}$$
$$= \frac{7}{8}$$

7 Sample space, $S = \{(3, 4), (3, 6), (3, 8), (5, 4), (5, 6), (5, 8), (7, 4), (7, 6), (7, 8)\}$

$$n(S) = 9$$

(a) $D = \text{difference between the numbers is more than 2} = \{(3, 6), (3, 8), (5, 8), (7, 4)\}$ r(D) = 4

$$n(D) = 4$$

$$P(D) = \frac{n(D)}{n(S)}$$

$$= \frac{4}{9}$$

(b) B = sum of the two numbers is a prime number= {(3, 4), (3, 8), (5, 6), (5, 8), (7, 4), (7, 6)} n(B) = 6P(B') = 1 - P(B)= $1 - \frac{6}{9}$

$$=\frac{1}{3}$$

$$n(S) = 36$$
(a) $A = \{(5, 1), (6, 2), (1, 5), (2, 6)\}$
 $n(A) = 4$
 $P(A') = 1 - P(A)$
 $= 1 - \frac{4}{36}$
 $= \frac{32}{36}$
 $= \frac{8}{9}$
(b) $B = \{(6, 5), (5, 6), (6, 6)\}$
 $P(B') = 1 - P(B)$
 $= 1 - \frac{3}{36}$
 $= \frac{33}{36}$
 $= \frac{11}{12}$
(c) $C = \{(6, 2), (4, 3), (3, 4), (2, 6)\}$
 $P(C') = 1 - P(C)$
 $= 1 - \frac{4}{36}$
 $= \frac{32}{36}$
 $= \frac{8}{9}$

UPSKILL 13.4

2

3

1 (a) Probability of selecting an orange-flavoured sweet = $\frac{3}{8}$

$$\frac{15}{15 + x} = \frac{3}{8}$$

$$120 = 45 + 3x$$

$$3x = 75$$

$$x = 25$$
(b) $15 + 25 = 40$
(a) R = event of choosing a red ball
 $n(R) = 6, n(S) = 6 + 12 = 18$
 $P(R) = \frac{n(R)}{n(S)}$
 $= \frac{6}{18}$
 $= \frac{1}{3}$
(b) $P(R) = \frac{1}{2}, n(R) = 6 + x, n(S) = 18 + x$
 $\frac{6 + x}{18 + x} = \frac{1}{2}$
 $12 + 2x = 18 + x$
 $x = 6$
(a) (i) $\frac{24}{80} = \frac{3}{10}$
(ii) $\frac{10 + 12}{80} = \frac{11}{40}$
(b) $n(S) = 80 + y$
 $\frac{6 + 24 + y}{80 + y} = \frac{4}{9}$
 $270 + 9y = 320 + 4y$
 $5y = 50$
 $y = 10$

Summative Practice 13

Section A

1 *H* = obtaining at least one head = {(H, H), (H, T), (T, H)} n(H) = 22 + 26 + 24 = 72 n(S) = 100 $P(H) = \frac{n(H)}{n(S)}$ $= \frac{72}{100}$ $= \frac{18}{25}$ *Answer:* **A** 2 n(4) = 15, n(S) = 80 $P(4) = \frac{15}{80}$ $= \frac{3}{16}$

Answer: C

3 Answer: C

- 4 Sample space, $S = \{S_1, S_2, S_3, U_1, U_2, C_1, C_2, E, F, L\}$ n(S) = 10 C = obtaining a 'C'
 - n(C) = 2 $P(C) = \frac{n(C)}{n(S)}$ $= \frac{2}{10}$ $= \frac{1}{5}$

Answer: \mathbf{D}

5 Sample space, $S = \{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$

n(S) = 12A = obtaining a tail and a multiple of 3

$$A = \{(T, 3), (T, 6)\}$$
$$P(A) = \frac{n(A)}{n(S)}$$
$$= \frac{2}{12}$$
$$= \frac{1}{6}$$

Answer: **B**

6 Sample space, $S = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}$

```
n(S) = 21
```

A = obtaining a card with number such that the difference between the two digits of the number is 3

$$A = \{14, 25, 30\}$$
$$P(A) = \frac{n(A)}{n(S)}$$
$$= \frac{3}{21}$$
$$= \frac{1}{7}$$
Answer: **A**

7 n(S) = 5 + 7 + 8 = 20 R = choosing a red chip, n(R) = 5 $P(A) = \frac{n(R)}{n(S)}$ $= \frac{5}{20} = \frac{1}{4}$

 $P(B) = \frac{n(B)}{2}$ n(S) $=\frac{7}{20}$ Y = choosing a red chip, n(Y) = 8 $P(Y) = \frac{n(Y)}{2}$ n(S)8 = 20 2 = 5 Answer: D 8 W = winning a badminton match P(W) = 0.85P(W') = 1 - 0.85 = 0.15Answer: B 9 n(S) = 36 $A = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$ $P(A) = \frac{n(A)}{2}$ n(S)= 1 -36 30 36 = 5 6 Answer: D 10 Sample space, S = two-digit numbers $= \{10, 11, 12, 13, \dots, 99\}$ n(S) = 90 $120 = 1 \times 120$ $= 2 \times 60$ $= 3 \times 40$ $= 4 \times 30$ $= 5 \times 24$ $= 6 \times 20$ $= 8 \times 15$ $= 10 \times 12$ F = selecting two-digit numbers which is a factor of 120 and multiple of 5 = {10, 15, 20, 30, 40, 60} n(F) = 6 $P(F') = 1 - \frac{n(F)}{r}$ n(S)6 15 14 15 Answer: **B Section B 1** (a) $\{1, 2, 3, 4, 5, 6\}$ Equally likely (b) $S = \{(H, H, H), (H, H, T), (H, T, H), (T, H, H), (H, T, T), (H, T), (H,$ (T, H, T), (T, T, H), (T, T, T)Equally likely

B = choosing a red chip, n(B) = 7

- (c) $S = \{E_1, E_2, E_3, L_1, L_2, X, C, N, T\}$ Not equally likely
- (d) $S = \{R_1, R_2, B_1, B_2, B_3, Y_1, Y_2, Y_3, Y_4\}$ Not equally likely

2 Sample space, $S = \{(1, 1), (1, 3), (1, 5), (1, 7), (3, 1), (3, 3$ (3, 5), (3, 7), (5, 1), (5, 3), (5, 5), (5, 7), (7, 1), (7, 3), (7, 5), (7, 7)P(Both spins show odd numbers) = 1P(Sum of the two numbers shown is an odd number) = 0 $S = \{(1,\,7),\,(3,\,5),\,(5,\,3),\,(7,\,1)\}$ $P(\text{Sum of the two numbers shown is } 8) = \frac{4}{16} = \frac{1}{4}$ $S = \{(1, 5), (1, 7), (3, 7), (5, 1), (7, 1), (7, 3)\}$ P(Difference between the two numbers shown is at least 4) $=\frac{6}{16}=\frac{3}{8}$ **3** n(S) = 6 + 10 + 20 + 13 + 11 = 60(a) $P(\text{chess}) = \frac{6}{60} = \frac{1}{10}$ (b) P(bowling or squash) $=\frac{13+11}{1}$ 60 $=\frac{2}{5}$ (c) *P*(not table tennis) = 1 - P(table tennis) $= 1 - \frac{20}{60} = \frac{2}{3}$ (d) P(not badminton and table tennis) = 1 - P(chess and bowling and squash) $= 1 - \frac{6 + 13 + 11}{60} = \frac{1}{2}$ 4 (a) (i) $A = \{a \text{ month with } 31 \text{ days from the calendar} \}$ = {January, March, May, July, August, October, December} A'= {February, April, June, September, November} TRUE (ii) $Q = \{ \text{prime numbers from 1 to 9} \}$ $= \{2, 3, 5, 7\}$ $Q' = \{1, 4, 6, 8, 9\}$

$$n(Q') = 5$$

(b) P(Team A does not win the football competition)

 $= 1 - \frac{1}{4}$ $=\frac{3}{4}$

P(All the three teams do not win the football competition)

$$= 1 - \left(\frac{1}{4} + \frac{1}{8} + \frac{5}{12}\right)$$
$$= 1 - \frac{6 + 3 + 10}{24}$$
$$= \frac{5}{24}$$

5 (a) A' is the event of obtaining all heads $A' = \{H, H\}$ B' is the event of obtaining all tails

 $A' = \{\mathsf{T}, \mathsf{T}\}$

$$P(A) = \frac{n(A)}{n(S)}$$

= $\frac{2}{8}$
= $\frac{1}{4}$
$$B = \text{Event of obtaining exactly two head}$$

= {(H, H, T), (H, T, H), (T, H, H)}
$$P(B) = \frac{n(B)}{n(S)}$$

= $\frac{3}{2}$

8

Section C

1 (a) (i) Sample space,
$$S = \{S_1, S_2, E, A, K\}$$

(ii) $n(S) = 5$
(b) (i) $Y =$ yellow marble
 $P(Y) = \frac{1}{5}$
 $P(Y') = 1 - \frac{1}{5} = \frac{4}{5}$
(ii) $\frac{7 + 8 + 5 + 4}{7 + 8 + 5 + 4 + x} = \frac{4}{5}$
 $24 \times 5 = 4(24 + x)$
 $120 = 96 + 4x$
 $4x = 24$
 $x = 6$
(c) (i) $P(\text{female worker}) = 1 - \frac{3}{10} = \frac{7}{10}$
(ii) $P(\text{female worker}) = \frac{y}{12 + y}$
 $\frac{y}{12 + y} = \frac{7}{10}$
 $10y = 84 + 7y$
 $3y = 84$
 $y = 28$
2 (a) (i) $V' = \{\text{B, S, T, R}\}$
(ii) $V' = \{\text{Monday, Tuesday, Wednesday, Thursday, Friday}$

(b) (i)
$$P(\text{student with brown eyes}) = \frac{3+6}{15+15} = \frac{9}{30}$$

 $P(\text{student does not have brown eyes}) = 1 - \frac{9}{30}$
 $= \frac{21}{30}$
 $= \frac{7}{10}$

- (ii) $P(\text{student is a boy who has brown eyes}) = \frac{3}{30} = \frac{1}{10}$
- (iii) P(student is not a girl who has brown eyes)

$$= 1 - \frac{6}{30} = \frac{4}{5}$$

(c) $n(S) = 6 + 12 + 15 + 8 + 4 = 45$
(i) $P(<12) = \frac{6 + 12 + 15 + 8}{10} = \frac{41}{45}$
(ii) $\frac{6 + n}{45 + n} = \frac{1}{4}$
 $24 + 4n = 45 + n$
 $3n = 21$
 $n = 7$

3 (a) (i) Probability that the champion is not A = P(A')

$$= 1 - \frac{7}{12}$$
$$= \frac{5}{12}$$

(ii) Probability that the champion is B

$$= 1 - \frac{3}{4}$$
$$= \frac{1}{4}$$

Probability that the champion is C

$$= 1 - \frac{7}{12} - \frac{1}{4}$$
$$= \frac{12 - 7 - 3}{12}$$
$$= \frac{1}{6}$$

- $\begin{array}{ll} (b) & (i) \ \ S = \{(O,\,S),\,(O,\,I),\,(O,\,X),\,(N,\,S),\,(N,\,I),\,(N,\,X),\\ & (E,\,S),\,(E,\,I),\,(E,\,X)\} \end{array}$
 - (ii) Let *A* be the event that the two cards drawn are vowels.

$$A = (O, I), (E, I)$$

 $P(A) = \frac{2}{9}$

- (iii) Let *B* be the event that exactly one consonant is drawn. B = (O, S), (O, X), (N, I), (E, S), (E, X) $P(B) = \frac{5}{9}$
- (c) (i) Probability that the student chosen is not a prefect

$$= 1 - \frac{3}{8}$$
$$= \frac{5}{8}$$
(ii) $\frac{3}{8} = \frac{9}{24}$

Therefore, the total number of students in the class is 24

(iii)
$$\frac{9+x}{24+x} = \frac{4}{9}$$

 $81 + 9x = 96 + 4x$
 $5x = 15$
 $x = 3$