Fully-Worked Solutions

UPSKILL 1.2

1 (a) 10, 16, 22, 28, 34, ... + 6 + 6 + 6 + 6Pattern: + 6It is a sequence

(b)
$$-2$$
, 0, 3, 8, 14, ...
+ 2 + 5 + 3 + 6
No pattern is shown. Not a sequence.
(c) -3.5 , -3.0 , -2.5 , -2.0 , -1.5 , ...
+ 0.5 + 0.5 + 0.5 + 0.5
Pattern: + 0.5
It is a sequence

- **2** (a) 16, 22, 28, 34, 40, 46, 52, ...
 - (b) -7, -2, 3, 8, 13, 18, ...
 - (c) 1, 2, 4, 8, 16, 32, 64, 128, ...
 - (d) 192, 96, 48, 24, 12, 6, ...
 - (e) $0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, \dots$
- **3** (a) 8, 11, 14, 17, 20, 23, ...
 - (b) 25, 20, 15, 10, 5, 0, ...
 - (c) 4, 8, 16, 32, 64, 128, ...
 - (d) 256, 64, 16, 4, 1, 0.25, \dots

UPSKILL 1.3

(h) 2 0 5 9 14

1 (a) 4, 9, 14, 19, ...

Numbers Pattern: +5 Words Add 5 to the previous number

- $\frac{\text{Algebraic expressions}}{4 = 5 \times 1 1}$
- $4 = 3 \times 1 1$ $9 = 5 \times 2 - 1$
- $14 = 5 \times 3 1$
- $19 = 5 \times 4 1$

Therefore, the pattern of the number sequence can be expressed as 5n - 1, where n = 1, 2, 3, ...

(b) 19, 16, 13, 10, ...

Numbers

Pattern: -3

Words

Subtract 3 from the previous number

Algebraic expressions

 $19 = 22 - 3 \times 1$ $16 = 22 - 3 \times 2$

 $13 = 22 - 3 \times 3$ $10 = 22 - 3 \times 4$

Therefore, the pattern of the number sequence can be expressed as 22 - 3n, where n = 1, 2, 3, ...

(c) 96, 48, 24, 12, ...

 $\frac{\text{Numbers}}{\text{Pattern:} \div 2}$

Words

Divide the previous number by 2

Algebraic expressions

 $96 = 192 \div 2^{1}$ $48 = 192 \div 2^{2}$ $24 = 192 \div 2^{3}$ $12 = 192 \div 2^{4}$

Therefore, the pattern of the number sequence can be expressed as $192 \div 2^n$, where n = 1, 2, 3, ... (d) 3, $5\frac{1}{2}$, 8, $10\frac{1}{2}$, ...

Numbers

Pattern: $+2\frac{1}{2}$

Words

Add $2\frac{1}{2}$ to the previous number

$$3 = 2\frac{1}{2} \times 1 + \frac{1}{2}$$

$$5\frac{1}{2} = 2\frac{1}{2} \times 2 + \frac{1}{2}$$

$$8 = 2\frac{1}{2} \times 3 + \frac{1}{2}$$

$$10\frac{1}{2} = 2\frac{1}{2} \times 4 + \frac{1}{2}$$

Therefore, the pattern of the number sequence can be expressed as $2\frac{1}{2} \times n + \frac{1}{2}$ or $\frac{5n+1}{2}$, where n = 1, 2, 3, ...

2 (a) 1, 3, 5, 7, ... [odd numbers]
1, 3, 5, 7, 9, 11, 13, **15**, 17, 19, 21, **23**
$$T_8 = 15, T_{12} = 23$$

- (b) -7, -3, 1, 5, 9, ... [add 2]
 -7, -3, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37
 T₈ = 21, T₁₂ = 37
- (c) 11, 8, 5, 2, -1, ... [subtract 3] 11, 8, 5, 2, -1, -4, -7, -10, -13, -16, -19, -22 $T_8 = -10, T_{12} = -22$
- 3

п	т
1	3
2	5
3	7
4	9
5	11

 $m = 1 + 2n, \text{ where } n = 1, 2, 3, \dots$ 4 (a) $T_1 = 90 = 94 - 4 \times 1$ $T_2 = 86 = 94 - 4 \times 2$ $T_3 = 82 = 94 - 4 \times 3$ $T_4 = 78 = 94 - 4 \times 4$ $\therefore T_n = 94 - 4 \times n, n = 1, 2, 3, \dots$ (b) 94 - 4n = 2 -4n = 2 - 94 -4n = -92 n = 23 \therefore It is 23^{rd} term 5 (a) $\frac{5}{6}, \frac{6}{7}$ (b) $T_{50} = \frac{50}{51}$ (c) $T_n = \frac{n}{n+1}, n = 1, 2, 3, \dots$

Summative Practice 1

Section A

$$1 -2, -1, 1, 4, p, 13, ... +1 +2 +3 +4 +5$$

$$p = 4 + 4$$

$$= 8$$

Answer: C

2 2, 5, 8, 11, ... +3 + 3 + 3Answer: A 3 3 5 4 6 7 8 8 9 10 13 15 17 19 23 28 k k = 19 + 23 = 42Answer: **D 4** 2, <u>3</u>, 5, <u>8</u>, <u>13</u>, *m*, <u>___</u> m = 8 + 13 = 21Answer: C **5** $-11 = 9 \times 1 - 20$ $-2 = 9 \times 2 - 20$ $7 = 9 \times 3 - 20$ $16 = 9 \times 4 - 20$ 9n - 20, where n = 1, 2, 3, ...Answer: C **6** $T_1 = 1 = 1^2$, $T_2 = 4 = 2^2$, $T_3 = 9 = 3^2$, $T_4 = 16 = 4^2$ $\therefore T_{10} = 10^2 = 100$ Answer: A 7 1 = 1 3 = 1 + 26 = 1 + 2 + 3 8^{th} arrangement = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 Answer: C 8 2, 4, 6, 8, ... are even numbers. Answer: **B 9** $T_n = n(6n - 11)$ $T_{10} = 10(6 \times 10 - 11) = 490$ Answer: A

10
$$1^2, 2^2, 3^2, 4^2, \dots n^2$$

Answer: **D**

Section B

- **2** (a) 16, 22, <u>28</u>, 34, 40, <u>46</u>, 52, ... [Add 6 to the previous number]
 - (b) <u>-7</u>, -2, 3, 8, <u>13</u>, ... [Add 5 to the previous number]
- **3** (a) Add 8 to the previous number: 16, 24, 32, 40, 48, 56
 - (b) Add 2 to the previous number:9, 11, 13, 15, 17, 19

Section C
1 (a) (i)
$$+5$$
 $+5$ $+5$ $+5$ $+5$
 -7 , -2 , 3 , 8 , 13 , ...
It is a sequence
(ii) $\times 2 \times 3 \times 2 \times 1.5$
 3 , 6 , 18 , 36 , 54 , ...
It is not a sequence
(b) Area of 10^{th} square $= 10 \times 10$
 $= 100 \text{ cm}^2$
Area of square $= n^2$, $n = 1, 2, 3, ...$
(c) (i) $T_7 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$
(ii) $1 + 2 + 3 + 4 + ... + 20 = 210$
The 20^{th} term is equal to 210
2 (a) $6, 2, -2, -6, -10, -14, -18, -22$
(b) $10 = 4 + 6 \times 1$
 $16 = 4 + 6 \times 2$
 $22 = 4 + 6 \times 3$
 $28 = 4 + 6 \times 4$
:
The algebraic expression is $4 + 6n$, $n = 1, 2, 3$,

(c) (i) Square 1: 4 spots, Square 2: 8 spots Square 3: 12 spots, Square 4: 16 spots ...

(ii)
$$4 = 4 \times 1$$

 $8 = 4 \times 2$
 $12 = 4 \times 3$
 $16 = 4 \times 4$

The algebraic expression is 4n, n = 1, 2, 3, ...

3 (a)
$$-8 -8 -8 -8 -8$$

 $11, p, -5, -13, q$
 $p = 11 - 8 = 3$
 $q = -13 - 8 = -21$
(b) (i) $7^2 = 49$
(ii) $h = 2k - 1$
 $= 2(20) - 1$
 $= 39$
(c) $10\ 000 \times 1.03 = 10\ 300$
 $10\ 000 \times 1.03 \times 1.03 = 10\ 000 \times 1.03^2 = 10\ 609$
 $10\ 000 \times 1.03 \times 1.03 \times 1.03 = 10\ 000 \times 1.03^3 = 10\ 927.27$
 $10\ 000 \times 1.03 \times 1.03 \times 1.03 \times 1.03 = 10\ 000 \times 1.03^4$
 $= 11\ 255.09$
Total saving at the end of 10^{th} year
 $= 10\ 000 \times 1.03^{10}$

= RM13 439.16