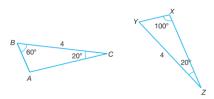
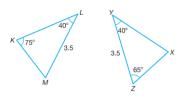
Form 5: Chapter 5

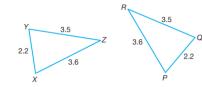

Congruency, Enlargement and Combined Transformations

Fully-worked Solutions

UPSKILL 5.1

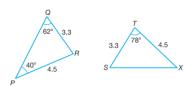

- 1 (a) Congruent
 - (b) Congruent
 - (c) Not congruent

2 (a)


$$\angle XYZ = 180^{\circ} - 100^{\circ} - 20^{\circ} = 60^{\circ}$$

 $\Delta BCA \cong \Delta YZX$ [Angle- Side-Angle]

(b)

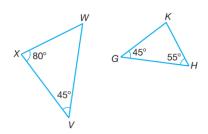

$$\angle YXZ = 180^{\circ} - 40^{\circ} - 65^{\circ} = 75^{\circ}$$

 $\Delta KLM \cong \Delta XYZ \text{ [Angle-Angle-Side]}$

(c)

 $\Delta XYZ \cong \Delta PQR$ [Side-Side-Side]

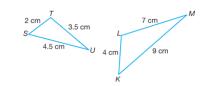
(d)


$$\angle PRQ = 180^{\circ} - 40^{\circ} - 62^{\circ} = 78^{\circ}$$

 $\triangle PRQ \cong \triangle XTS$ [Side-Angle-Side]

3 $\triangle CAB$ and $\triangle BDC$ are congruent.

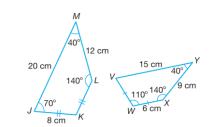
$$x = \angle DBC = \angle ACB = 180^{\circ} - 101^{\circ} - 32^{\circ} = 47^{\circ}$$


UPSKILL 5.2

1 (a)

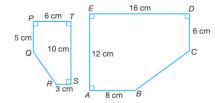
$$\angle XWV = 180^{\circ} - 80^{\circ} - 45^{\circ} = 55^{\circ}$$

 $\angle GKH = 180^{\circ} - 45^{\circ} - 55^{\circ} = 80^{\circ}$
 $\triangle XWV$ and KHG are similar because corresponding angles are equal.



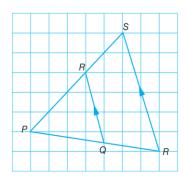
$$\frac{US}{MK} = \frac{UT}{ML} = \frac{ST}{KL} = \frac{1}{2}$$

 ΔUST and ΔMKL are similar because the corresponding sides are proportional.

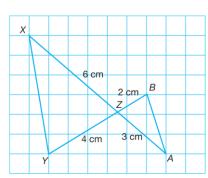

(c)

$$\angle JKL = 360^{\circ} - 140^{\circ} - 40^{\circ} - 70^{\circ} = 110^{\circ}$$

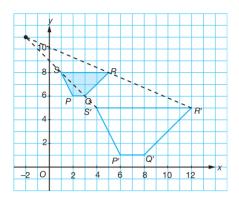
 $\angle YVW = 360^{\circ} - 110^{\circ} - 140^{\circ} - 40^{\circ} = 70^{\circ}$
 $\frac{JK}{VW} = \frac{LK}{XW} = \frac{ML}{YZ} = \frac{MJ}{YV} = \frac{4}{3}$


LMJK and *XYVM* are similar because the corresponding angles are equal and the corresponding sides are proportional.

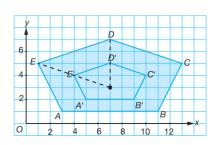
(d)


Not similar because $\frac{PQ}{AB} = \frac{ST}{DE} = \frac{5}{8}$ but $\frac{RS}{CD} = \frac{PT}{AE} = \frac{1}{3}$.

2 (a)

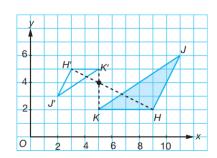

 ΔPQR and ΔPRS are similar because the corresponding angles are equal.

(b)



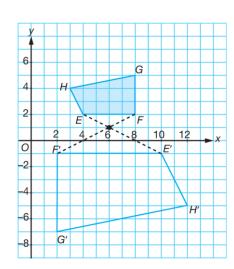
 ΔZXY and ΔZAB are similar because they have two corresponding sides which are proportional and one equal angle.

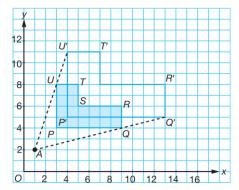
3 (a)


Centre of enlargement is (-2, 11). Scale factor = 2 (b)

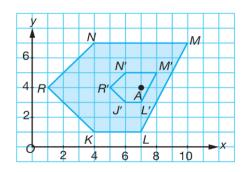
Centre of enlargement is (7, 3).

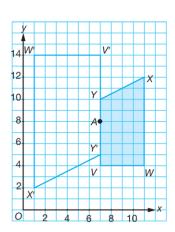
Scale factor =
$$\frac{1}{2}$$

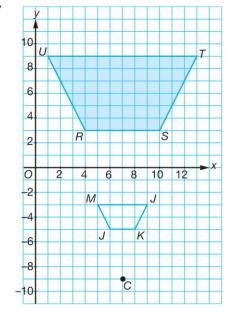

(c)


Centre of enlargement is (5, 4).

Scale factor =
$$-\frac{1}{2}$$


(e)


Centre of enlargement is (6, 1). Scale factor = -2 4


5

6

7

- 8 (a) Scale factor = 3
 - (b) Area of the shaded region

$$= \frac{22}{7}(21)^2 - \frac{22}{7}(7)^2$$
= 1 386 - 154
= 1 232 cm²

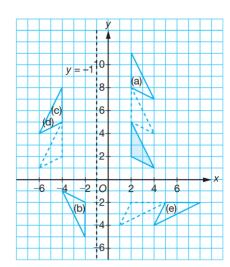
- **9** (a) Scale factor = $\frac{34}{6800} = \frac{1}{200}$
 - (b) Length of the plan = $\frac{1}{200} \times 10500$

(c) Area of the plan = $34 \times 52.5 = 1785 \text{ cm}^2$

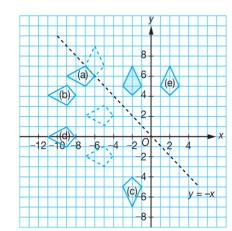
10 Area of
$$ACDE = \left(\frac{120}{30}\right)^2 \times Area of ABGF$$

Area of ABGF + Area of the shaded region = $16 \times$ Area of ABGF $15 \times$ Area of ABGF = 225Area of ABGF = 15 cm^2

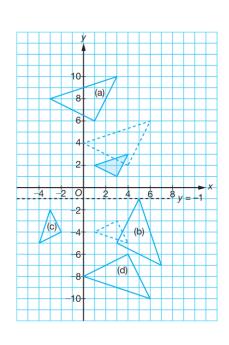
11 Area of *HKMN* =
$$\left(\frac{30}{20}\right)^2 \times$$
 Area of *PQRS*


Area of PQRS + Area of the shaded region = $\frac{9}{4} \times \text{Area of } PQRS$

 $\frac{5}{4}$ × Area of *PQRS* = Area of the shaded region


$$\frac{5}{4}$$
 × Area of *PQRS* = 100
Area of *PQRS* = 80 cm²

UPSKILL 5.3


1

2

3

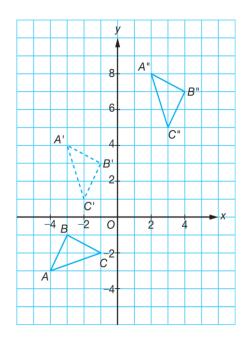
4 (a) (i) $A(2, -2) \xrightarrow{\mathbf{T}} (-4, 3) \xrightarrow{\mathbf{P}} (2, 3)$

(ii) $A(2,-2) \xrightarrow{\mathbf{P}} (-4,-2) \xrightarrow{\mathbf{T}} (-10,3)$

(b) Not equivalent

5 (a) (i) $B(-3, -4) \xrightarrow{\mathbf{R}} (4, -3) \xrightarrow{\mathbf{E}} (8, -6)$

(ii)
$$B(-3, -4) \xrightarrow{\mathbf{E}} (-6, -8) \xrightarrow{\mathbf{R}} (8, -6)$$

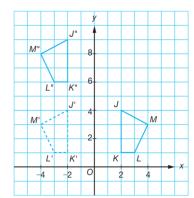

(b) Equivalent

6 (a) (i) $C(2,1) \xrightarrow{\mathbf{P}} (2,5) \xrightarrow{\mathbf{E}} (6,15)$

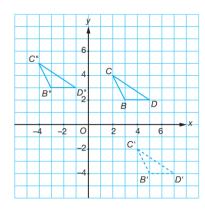
(ii)
$$C(2,1) \xrightarrow{\mathbf{E}} (6,3) \xrightarrow{\mathbf{P}} (6,3)$$

(b) Not equivalent

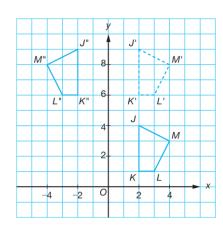
7 (a) (i)



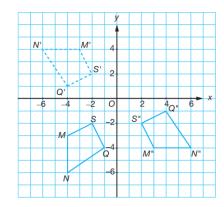
(ii)



(b) Not equivalent


8 (a) (i)

13 (a)



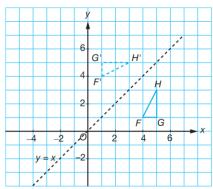
(ii)

(b) Translation $\begin{pmatrix} -6\\1 \end{pmatrix}$

14 (a)

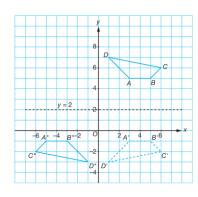
(b) Equivalent

9 V is reflection in the straight line y = 3U is an enlargement at the centre A(11, 3) with a scale factor of 3

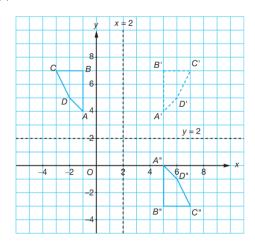

10 W is reflection in the straight line x = 1 **V** is a translation $\begin{pmatrix} 0 \\ -7 \end{pmatrix}$

11 K is a clockwise rotation of 90° about the centre Q(2, -4)
H is an enlargement at the centre Q(2, -4) with a scale factor of 2

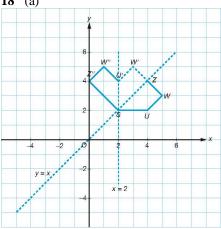
12 **S** is an anticlockwise rotation of 90° about the centre F(2, 4) **Q** is a translation $\begin{pmatrix} -5 \\ 0 \end{pmatrix}$


(b) Anticlockwise rotation of 90° about the origin

15 (a)


(b) Rotation of 360° about the origin

16 (a)


(b) Rotation of 180° about the centre (0, 2)

17 (a)

(b) Rotation of 180° about the centre (2, 2)

18 (a)

(b) Anticlockwise rotation of 90° about the centre S(2, 2)

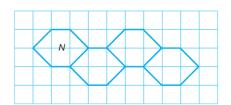
©EPH Publishing (M) Sdn. Bhd. (199801017497) 2025

- **19** (a) (i) $B(5,3) \xrightarrow{\mathbf{P}} (3,5)$
 - (ii) $B(5,3) \xrightarrow{\mathbf{P}} (3,5) \xrightarrow{\mathbf{T}} (5,2)$
 - (iii) $B(5,3) \xrightarrow{\mathbf{P}} (3,5) \xrightarrow{\mathbf{R}} (3,1)$
 - (b) **W** is an anticlockwise rotation of 90° about the centre C(3, 3)

V is an enlargement at the centre M(4, 3) with a scale factor of 3

(c) Area of $\triangle MQN = 3^2 \times \text{Area of } \triangle ABC$ $288 = 9 \times \text{Area of } \Delta ABC$

Area of $\triangle ABC = 32 \text{ cm}^2$


- **20** (a) (i) Reflection in the *x*-axis
 - (ii) Reflection in the y-axis
 - (iii) Rotation of 180° about the origin
 - (b) Enlargement at the centre (3, 0) with a scale factor of 3
 - (c) Area of $\Delta KLM = 3^2 \times \text{Area of } \Delta A''B''C''$ $270 = 9 \times \text{Area of } \Delta A'' B'' C''$ Area of $\Delta A''B''C''=30 \text{ cm}^2$

UPSKILL 5.4

1

2

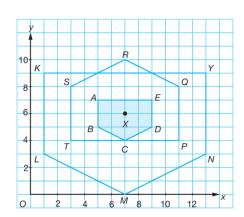
Summative Practice 5

Multiple-Choice Question

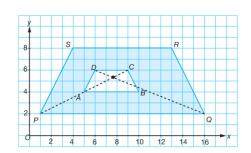
- 1 Area of $SKZWV = 4^2 \times \text{Area of } SLMNU$ Area of SLMNU + Area of the shaded region= $16 \times \text{Area of } SLMNU$ $180 = 15 \times \text{Area of } SLMNU$ Area of $SLMNU = 12 \text{ cm}^2$ Answer: B
- **2** Translation $\begin{pmatrix} a+h \\ b+k \end{pmatrix}$ *Answer*: C
- Clasterries metation
- **3** Clockwise rotation of $\theta \alpha$ about the origin *Answer*: A
- 4 (2, 2) $\xrightarrow{\mathbf{R}}$ (2, -2) $\xrightarrow{\mathbf{T}}$ (1, -4) *Answer:* B
- 5 (2,3) $\xrightarrow{\mathbf{T}}$ (3,1) $\xrightarrow{\mathbf{E}}$ (5,1) *Answer*: D

Structured Question

- 1 (a) $\angle PSQ = \angle RQS$ (Alternate angles, PS // QR) $\angle PQS = \angle RSQ$ (Alternate angles, PQ // SR) $SQ(\Delta PSQ) = SQ(\Delta RSQ)$ (Common side) $\therefore \Delta PQS \cong \Delta RQS$ (ASA) [Angle-Side-Angle]
- (b) AC = EC $\angle ACB = \angle ECD$ (Vertically opposite angles) BC = DC $\therefore \triangle ABC \cong \triangle EDC$ (SAS) [Side-Angle-Side]
- **2** (a) $\triangle CED$ and $\triangle CHK$ are similar.


(b)
$$\frac{HK}{ED} = \frac{9}{5}$$

$$\frac{CK}{CD} = \frac{CK}{6}$$


$$\therefore \frac{CK}{6} = \frac{9}{5}$$

$$CK = 10\frac{4}{5} \text{ cm}$$

- **3** (a) ΔRST and ΔRUV are similar.
 - (b) $\frac{UV}{ST} = \frac{x}{2}$ $\frac{RU}{RS} = \frac{7}{3}$ $\therefore \frac{x}{2} = \frac{7}{3}$ $x = 4\frac{2}{3} \text{ cm}$
 - $\frac{RT}{RV} = \frac{y}{y+6}$ $\frac{RS}{RU} = \frac{3}{7}$ $\therefore \frac{y}{y+6} = \frac{3}{7}$ 7y = 3y+18 4y = 18 $y = 4\frac{1}{2} \text{ cm}$
- 4

5

- (a) Centre of enlargement is (7, 5).
- (b) Scale factor = $\frac{SR}{DC} = \frac{9}{3} = 3$

(c) Area of *PQRS* = 3² × Area of *ABCD*Area of *ABCD* + Area of the shaded region = 9× Area of *ABCD*8 × Area of *ABCD* = Area of the shaded region
8 × Area of *ABCD* = 64

Area of $ABCD = 8 \text{ cm}^2$

- **6** (a) $T(10, 2) \xrightarrow{L} (7, 4) \xrightarrow{L} (4, 6)$ $R(7, 2) \xrightarrow{W} (6, 5) \xrightarrow{L} (3, 7)$
 - (b) (i) U is a reflection in the straight line y = 8.

V is an enlargement at the centre P(4, 11) with a scale factor of 3.

(c) Area of $RQPST = 3^2 \times Area$ of ABCDEF= 9×60 = 540 cm^2

Area of the shaded region $= 540 - 60 = 480 \text{ cm}^2$

- 7 (a) (i) $B(2,4) \xrightarrow{\mathbf{T}} (5,2) \xrightarrow{\mathbf{R}} (2,-1)$ (ii) $B(2,4) \xrightarrow{\mathbf{R}} (0,2) \xrightarrow{\mathbf{T}} (3,0)$
 - (b) (i) (a) **U** is an anticlockwise rotation of 90° about the centre C(6, 10).
 - (b) **V** is an enlargement at the centre (10, 10) with a scale factor of 2.
 - (ii) Area of $DEGF = 2^2 \times Area$ of $DABG = 4 \times 20$ = 80

Area of the shaded region = 80 - 20= 60 m^2

- 8 (a) (i) (3, 4) $\xrightarrow{\mathbf{T}}$ (1, 1) (ii) (3, 4) $\xrightarrow{\mathbf{R}}$ (4, -1) (iii) (3, 4) $\xrightarrow{\mathbf{R}}$ (4, -1) $\xrightarrow{\mathbf{T}}$ (2, -4)
 - (b) (i) (a) **V** is a reflection in the straight line y = 1
 - (b) W is an enlargement at the centre (4. 2) with a scale factor of 3
 - (ii) Area of $PQRS = 3^2 \times 25 = 225$ Area of the shaded region = 225 - 25= 200 cm^2
- 9 (a) (i) $A(1, 2) \xrightarrow{\mathbf{P}} (2, 1) \xrightarrow{\mathbf{T}} (-3, 4)$ (ii) $A(1, 2) \xrightarrow{\mathbf{R}} (-3, 0) \xrightarrow{\mathbf{P}} (0, -3)$
 - (b) (i) (a) **W** is a reflection in the straight line y = 3
 - (b) **V** is an enlargement at the centre (2, 1) with a scale factor of 3

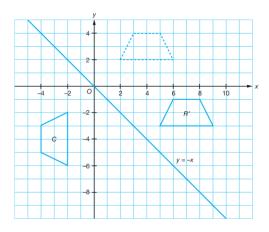
- (ii) Area of $DHFG = 3^2 \times Area$ of MNKLArea of $DHFG = 9 \times 14 = 126$ Area of the shaded region = 126 - 14= 112 units²
- **10** (i) $J(1, 2) \xrightarrow{\mathbf{R}} (5, 2) \xrightarrow{\mathbf{U}} (3, 4)$
 - (ii) $J(1,2) \xrightarrow{\mathbf{T}} (3,5) \xrightarrow{\mathbf{R}} (3,5)$
 - (b) (i) N is a reflection in the straight line y = 6
 - (ii) **M** is an enlargement at the centre F(7, 8) with a scale factor of 3
 - (c) Area of $EFGH = 3^2 \times \text{Area of } ABCD$ Area of $EFGH = 9 \times 20 = 180 \text{ m}^2$ Area of the shaded region = 180 - 20 $= 160 \text{ m}^2$
- **11** (a) (i) $A(5,3) \xrightarrow{\mathbf{T}} (3,7) \xrightarrow{\mathbf{T}} (1,11)$
 - (ii) $A(5,3) \xrightarrow{\mathbf{T}} (-3,5) \xrightarrow{\mathbf{T}} (-5,9)$
 - (b) (i) (a) N is a reflection in the straight line BC
 - (b) **M** is an enlargement at the centre (4, 2) with a scale factor of 3
 - (ii) Area of shaded region
 - = Area of ΔFDE Area of ΔCGB
 - = 270 30
 - $= 240 \text{ m}^2$
- 12 (a) (i) $K(5,9) \xrightarrow{\mathbf{T}} (2,5) \xrightarrow{\mathbf{T}} (-1,1)$
 - (ii) $K(5,9) \xrightarrow{\mathbf{P}} (5,3) \xrightarrow{\mathbf{T}} (2,-1)$
 - (b) (i) (a) **N** is a clockwise rotation of 90° about the centre (4, 5).
 - (b) **M** is an enlargement at the centre Q(5, 8) with a scale factor of 3
 - (ii) Area of $QRSTU = 3^2 \times \text{Area of } KLMNP$

180 = 9 Area of KLMNP

Area of *KLMNP* = 20 m^2

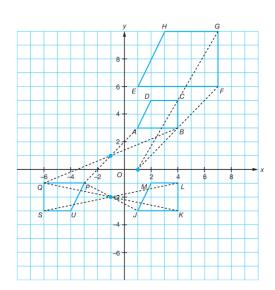
- $\textbf{13} \text{ (a) (i) } H^{\prime\prime}(4,4) \xrightarrow{\quad \textbf{R^{-1}} \quad} H^{\prime}(4,-4) \xrightarrow{\quad \textbf{T}^{-1} \quad} H(-2,1)$
 - (ii) $H''(4, 4) \xrightarrow{\mathbf{E}^{-1}} H'(2, 2) \xrightarrow{\mathbf{P}^{-1}} H(2, -2)$
 - (b) (i) (a) y = x (b) x = 7
 - (ii) Anticlockwise rotation of 90° about the centre (7, 7)
 - (c) (i) **W** is an enlargement at the centre (-2, 0) with a scale factor of 2
 - (ii) Area of hexagon $A = 56.5 \text{ cm}^2$ Area of hexagon $P = 2^2 \times 56.5$ = 226 cm²

SPM SPOT

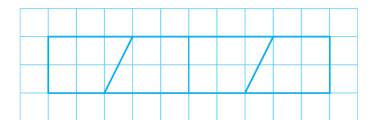

1 Answer: D

2 Answer: A

 ${\bf 3}$ The inverse transformation of ${\bf M}$ is translation $\begin{pmatrix} -3 \\ 5 \end{pmatrix}$ and


the inverse transformation of **N** is reflection in the straight line y = -x.

The object of R' is given by $\mathbf{N}^{-1}\mathbf{M}^{-1}$.


Answer: C

4

- (a) (i) **V** is translation $\begin{pmatrix} 0 \\ -6 \end{pmatrix}$.
 - (ii) **W** is a 180° rotation about centre (-1, -2).
 - (iii) The single transformation is a 180° rotation about centre (-1, 1).
 - (b) (i) Scale factor = $\frac{HG}{DC} = \frac{4}{2} = 2$.
 - (ii) The coordinates of the centre of enlargement are (1, 0).
 - (iii) Area of $EFGH = 2^2 \times \text{Area of } ABCD$ $45 = 4 \times \text{Area of } ABCD$

(c)

