Form 4: Chapter 9 Probability of Combined Events Fully-worked Solutions

UPSKILL 9.1

- **1** (a) (i) The event of obtaining a multiple of 3 or a factor of 12, i.e. $A \cup B$
 - (ii) The event of obtaining a multiple of 3 and a factor of 12, i.e. *A*∩*B*(b) (i) *A*∪*B* = {1, 2, 3, 4, 6, 9, 12}
 - (ii) $A \cap B = \{3, 6, 12\}$
 - **2** (a) (i) The event such that the first digit is an even number or the last digit is an odd number, i.e. $P \cup Q$
 - (ii) The event such that the first digit is an even number and the last digit is an odd number, i.e. $P \cap Q$
 - (b) (i) $P \cup Q = \{618, 681, 816, 861\}$ (ii) $P \cap Q = \{681, 861\}$

UPSKILL 9.2

1 (a) Dependent (b) Dependent (c) Independent

2

Box B Box A	1	2	3
1	(1, 1)	(1, 2)	(1, 3)
2	(2, 1)	(2, 2)	(2, 3)
3	(3, 1)	(3, 2)	(3, 3)
4	(4, 1)	(4, 2)	(4, 3)

(a)
$$\frac{7}{12}$$
 (b) $\frac{1}{6}$

$$3 S = \{(R, 2), (R, 3), (R, 7), (R, 8), (U, 2), (U, 3), (U, 7), (U, 8)\}\$$
(a) $\{(R, 3), (R, 7), \{(U, 2), (U, 3), (U, 7), (U, 8)\}\$

$$\frac{3}{4}$$
(b) $\{(R, 2), (R, 3), (R, 7)\}\$

$$\frac{3}{8}$$

4 (a) P(all three of them strike the target)

$$=\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3} = \frac{1}{5}$$

(b) P(only one of them strikes the target)
$$=\left(\frac{2}{5} \times \frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{3}{5} \times \frac{3}{4} \times \frac{1}{3}\right) + \left(\frac{3}{5} \times \frac{1}{4} \times \frac{2}{3}\right)$$
$$=\frac{1}{30} + \frac{3}{20} + \frac{1}{10}$$
$$=\frac{17}{60}$$

(c) P(at least one of them strike the target)

$$=1-\frac{3}{5}\times\frac{1}{4}\times\frac{1}{3}$$
$$=\frac{19}{20}$$

5 (a) P(win all the games)

$$=\frac{3}{5} \times \frac{1}{4} \times \frac{5}{6} = \frac{1}{8}$$

(b) P(win at least two of the games)
$$= \left(\frac{3}{5} \times \frac{1}{4} \times \frac{5}{6}\right) + \left(\frac{3}{5} \times \frac{1}{4} \times \frac{1}{6}\right)$$

$$+ \left(\frac{2}{5} \times \frac{1}{4} \times \frac{5}{6}\right) + \left(\frac{3}{5} \times \frac{3}{4} \times \frac{5}{6}\right)$$

$$= \frac{1}{8} + \frac{1}{40} + \frac{1}{12} + \frac{3}{8}$$

$$= \frac{73}{120}$$

1

<u>4</u> 9 BBB • B В 4 9 59 BBM • M В 4 <u>4</u> 9 • B BMB <u>5</u> 9 М 59 M BMM 4B5*M* <u>4</u> 9 ●B MBB <u>5</u> 9 4 В 9 59 M MBM ЪМ « <u>4</u> 9 B MMB <u>5</u> 9 • M 59 MMM M

(a)
$$P(MM) = \frac{5}{9} \times \frac{5}{9} = \frac{25}{81}$$

(b) $P(MMM) = \frac{5}{9} \times \frac{5}{9} \times \frac{5}{9} = \frac{125}{729}$

(c) P(BBB) + P(BBM) + P(BMB) + P(MBB)

$$= \left(\frac{4}{9} \times \frac{4}{9} \times \frac{4}{9}\right) + \left(\frac{4}{9} \times \frac{4}{9} \times \frac{5}{9}\right) \times 3$$
$$= \frac{304}{729}$$
$$(d) P(BBM) + P(BMB) + P(MBB)$$
$$= \left(\frac{5}{9} \times \frac{4}{9} \times \frac{4}{9}\right) \times 3 = \frac{80}{243}$$

7 (a) P(both cards have the same colour) = P(BB) + P(MM) + P(HH)

$$= \left(\frac{4}{14} \times \frac{3}{13}\right) + \left(\frac{3}{14} \times \frac{2}{13}\right) + \left(\frac{7}{14} \times \frac{6}{13}\right)$$
$$= \frac{30}{91}$$

©EPH Publishing (M) Sdn. Bhd. (199801017497) 2025

Outcomes

(b) P(the cards are of different colours)

$$= 1 - \frac{30}{91} = \frac{61}{91}$$

8 (a) P(BH) + P(HB) =
$$\left(\frac{4}{15} \times \frac{5}{14}\right) \times 2 = \frac{4}{21}$$

(b) P(HH) + P(BB) = $\left(\frac{5}{15} \times \frac{4}{14}\right) + \left(\frac{6}{15} \times \frac{5}{14}\right) = \frac{5}{21}$

9 P(3 of them obtain the pens with the same colour) = P(*BBB*) +P(*MMM*)

$$= \left(\frac{7}{10} \times \frac{6}{9} \times \frac{5}{8}\right) + \left(\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}\right)$$
$$= \frac{7}{24} + \frac{1}{120}$$
$$= \frac{3}{10}$$

10 (a) P(MM) =
$$\frac{1}{6} \times \frac{4}{6} = \frac{1}{9}$$

(b) P(MK) + P(KM) = $\left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{3}{6} \times \frac{4}{6}\right) = \frac{13}{36}$
(c) P(different colours) = 1 - P(same colour)
= $1 - \left(\frac{1}{6} \times \frac{4}{6}\right) - \left(\frac{2}{6} \times \frac{1}{6}\right) - \left(\frac{3}{6} \times \frac{1}{6}\right)$
= $\frac{3}{4}$

11 (a) P(*HH*) =
$$\frac{2}{9} \times \frac{8}{14} = \frac{8}{63}$$

(b) P(*KB*) + P(*BK*) = $\frac{3}{9} \times \frac{4}{14} + \frac{4}{9} \times \frac{2}{14} = \frac{10}{63}$

12 B – Blue M – Red P – White

(a)
$$P(MB) + P(BM) = \frac{6}{10} \times \frac{4}{10} + \frac{4}{10} \times \frac{5}{16} = \frac{73}{200}$$

(b) $P(BP) = \frac{4}{10} \times \frac{3}{16} = \frac{3}{40}$

UPSKILL 9.3

1 (a) Mutually exclusive events(b) Not mutually exclusive events

2 (a) (i)
$$P(A) = \frac{4}{10} = \frac{2}{5}$$

(ii) $P(B) = \frac{3}{10}$

(b) Yes. A and B are mutually exclusive events.

(c) P(
$$A \cup B$$
) = $\frac{2}{5} + \frac{3}{10} = \frac{7}{10}$

3 (a) Yes, *A* and *B* are mutually exclusive events.

(b)
$$P(A \cup B) = \frac{4}{6} + \frac{2}{6} = 1$$

4						
	B	1	2	3	4	5
	1	\checkmark			×	
	2			×		
	3		×			
	4	×				
	5					

Mark $\sqrt{}$ for the event both cards have the same number. Mark \times for the event the sum of the numbers on the two cards is 5.

- (a) P(both cards have the same number) = $\frac{5}{25} = \frac{1}{5}$
- (b) P(the sum of the numbers on the two cards is 5) = $\frac{4}{25}$

(c) P(
$$A \cup B$$
) = $\frac{1}{5} + \frac{4}{25} = \frac{9}{25}$

5
$$(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

= $\frac{3}{10} + \frac{2}{5} - \left(\frac{3}{10} \times \frac{2}{5}\right)$
= $\frac{29}{50}$

6 (a) Yes, both events are mutually exclusive.

(b) (i)
$$P(T \cup B) = \frac{2}{9} + \frac{4}{9} = \frac{2}{3}$$

(ii) $P(T' \cap B') = P(T \cup B)' = 1 - \frac{2}{3} = \frac{1}{3}$

7

Condition Machine	Good	Defective	Total
Р	16	20	36
Q	9	15	24
Total	25	35	60

(a) P(in good condition or produced by machine P)

$$= \frac{25}{60} + \frac{36}{60} - \frac{16}{60}$$
$$= \frac{3}{4}$$

(b) P(defective or produced by machine Q)

_	35	24	15
_	60	60	60
_	11		
_	15		

UPSKILL 9.4

1

B A	1	2	3	4
1				
2				√×
3			√×	×
4		√×	×	√×

Mark $\sqrt{}$ for the event that the sum of the numbers is even. Mark \times for the event the sum of the numbers is greater than 5.

(a) P(the sum of the two numbers is even and greater than 5)

$$=\frac{4}{16}=\frac{1}{4}$$

(b) P(the sum of the two numbers is even or greater than 5)

$$=\frac{10}{16}=\frac{5}{8}$$

2 P - White B - Black

K - Grey

$$P(PP) + P(HH) + P(KK)$$

$$= \left(\frac{2}{10} \times \frac{5}{10}\right) + \left(\frac{3}{10} \times \frac{5}{10}\right) + \left(\frac{5}{10} \times \frac{2}{10}\right)$$

$$= \frac{7}{20}$$
3 (a) $P(A \ \overline{R} \ \overline{Z}) + P(\overline{A} \ R \ \overline{Z}) + P(\overline{A} \ \overline{R} \ Z)$

$$= \left(\frac{9}{10} \times \frac{1}{5} \times \frac{3}{10}\right) + \left(\frac{1}{10} \times \frac{4}{5} \times \frac{3}{10}\right)$$

$$+ \left(\frac{1}{10} \times \frac{1}{5} \times \frac{7}{10}\right)$$

$$= \frac{23}{150}$$
(b) $P(A \ R \ \overline{Z}) + P(A \ \overline{R} \ Z) + P(\overline{A} \ R \ Z)$

$$= \left(\frac{9}{10} \times \frac{4}{5} \times \frac{3}{10}\right) + \left(\frac{9}{10} \times \frac{1}{5} \times \frac{7}{10}\right)$$

$$+ \frac{1}{10} \times \frac{4}{5} \times \frac{7}{10}$$

$$= \frac{199}{500}$$

(c) P(at least one of them strike the target)

$$= 1 - \frac{1}{10} \times \frac{1}{5} \times \frac{3}{10}$$
$$= \frac{497}{500}$$

$$4 P(MH) + P(HM)$$
$$= \left(\frac{6}{10} \times \frac{4}{10}\right) + \frac{4}{10} \times \frac{6}{9}$$
$$= \frac{38}{75}$$

5 (a) P(both are SPM books)

$$= \frac{5}{8} \times \frac{4}{7}$$
$$= \frac{5}{14}$$

(b) P(both are of the same subject)

$$= \left(\frac{6}{18} \times \frac{5}{17}\right) + \left(\frac{7}{18} \times \frac{6}{17}\right) + \left(\frac{5}{18} \times \frac{4}{17}\right)$$
$$= \frac{46}{153}$$

6 (a) P(both are males)

1

$$=\frac{5}{12} \times \frac{4}{11}$$
$$=\frac{5}{33}$$

(b) P(both are from the same country)

$$= \left(\frac{7}{16} \times \frac{6}{15}\right) + \left(\frac{4}{16} \times \frac{3}{15}\right) + \left(\frac{5}{16} \times \frac{4}{15}\right)$$
$$= \frac{37}{150}$$

Summative Practice 9

Multiple-Choice Questions

1

B A	1	3	5
1			
2	×	×	√×
3			
4	×	√×	×
5			

Mark $\sqrt{}$ for the event that the sum of the numbers is 7. Mark \times for the event that the product of the numbers is greater than 5.

P(the sum of the numbers is 7 or the product of the numbers is greater than 5)

$$=\frac{6}{15}=\frac{2}{5}$$
Answer: C

2 P(multiple of 3 or perfect square)

 $=\frac{3}{9}+\frac{2}{9}-\frac{1}{9}=\frac{4}{9}$ *Answer*: B

3 P(two pass)

$$= \left(\frac{1}{3} \times \frac{2}{5} \times \frac{1}{4}\right) + \left(\frac{2}{3} \times \frac{2}{5} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{3}{4} \times \frac{3}{5}\right)$$
$$= \frac{1}{30} + \frac{1}{5} + \frac{3}{20}$$
$$= \frac{23}{60}$$

Answer: D

4 P(same colour)

$$= \left(\frac{5}{11} \times \frac{6}{10}\right) + \left(\frac{6}{10} \times \frac{5}{11}\right)$$
$$= \frac{6}{11}$$
Answer: C

5 P(RG) + P(GR)

$$= \left(\frac{4}{8} \times \frac{4}{8}\right) + \left(\frac{4}{8} \times \frac{4}{7}\right)$$
$$= \frac{15}{18}$$
Answer: B

Structured Questions

1 (a) P(FFF)

$$= \frac{8}{9} \times \frac{23}{25} \times \frac{19}{20}$$

$$= \frac{874}{1\,125}$$
(b) P(only one of them pass)

$$= \left(\frac{1}{9} \times \frac{23}{25} \times \frac{19}{20}\right) + \left(\frac{8}{9} \times \frac{2}{25} \times \frac{19}{20}\right) + \left(\frac{1}{20} \times \frac{8}{9} \times \frac{23}{25}\right)$$

$$= \frac{437}{4\,500} + \frac{76}{1\,125} + \frac{46}{1\,125}$$

$$= \frac{37}{180}$$

(c) P(at least one of them pass)
=1- P(all fail)
=1-
$$\frac{8}{9} \times \frac{23}{25} \times \frac{19}{20}$$

=1- $\frac{874}{1125}$
= $\frac{251}{1125}$

2 (a) P(Physics, Chemistry)

$$=\frac{3}{14} \times \frac{5}{13}$$
$$=\frac{15}{182}$$

(b) P(the books are of the same category)

$$= \left(\frac{3}{14} \times \frac{2}{13}\right) + \left(\frac{5}{14} \times \frac{4}{13}\right) + \left(\frac{6}{14} \times \frac{5}{13}\right) = \frac{4}{13}$$

3 (a) Yes, *T* and *S* are mutually exclusive events.(b) (i) P(play tennis or squash)

$$=\frac{4}{7} + \frac{2}{7}$$
$$=\frac{6}{7}$$

(ii) P(did not play tennis nor squash)

$$=1-\frac{6}{7}$$
$$=\frac{1}{7}$$

4

A B	1	2	3
1			×
2		$\sqrt{\times}$	
3	×		

Mark $\sqrt{}$ for the event the numbers of the cards are the same. Mark \times for the event the sum of the numbers on the cards is 4.

(a) P(the numbers of the cards are the same)

$$=\frac{3}{9}=\frac{1}{3}$$

(b) P(the sum of the numbers on the cards is 4)

 $=\frac{3}{9}=\frac{1}{3}$

(c) P(the numbers of the cards are the same or the sum of the numbers on the cards is 4)

$$=\frac{3}{9}+\frac{3}{9}-\frac{1}{9}=\frac{5}{9}$$

5 (a) P(both are STPM books)

$$=\frac{7}{13}\times\frac{6}{12}=\frac{7}{26}$$

(b) P(both books are of the same subject)

$$= \left(\frac{6}{18} \times \frac{5}{17}\right) + \left(\frac{7}{18} \times \frac{6}{17}\right) + \left(\frac{5}{18} \times \frac{4}{17}\right)$$
$$= \frac{46}{153}$$

P(even number and letter A) = $\frac{2}{8} = \frac{1}{4}$

- (b) P{(2, A), (2, B), (7, A), (7, B), (4, B), (9, B)} P(prime number or letter B) = $\frac{6}{8} = \frac{3}{4}$
- 11 (a) P(white, blue ball) = $\frac{120}{360} \times \frac{2}{6} = \frac{1}{9}$
 - (b) P(purple, red card) + P(white, red ball)

$$= \frac{240}{360} \times \frac{6}{14} + \frac{120}{360} \times \frac{4}{6}$$
$$= \frac{32}{63}$$

12 P(same colour)

$$= \left(\frac{4}{15} \times \frac{3}{14} \times \frac{2}{13}\right) + \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}\right) + \left(\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13}\right)$$
$$= \frac{4}{455} + \frac{2}{91} + \frac{4}{91}$$
$$= \frac{34}{455}$$

13 (a) P(strike the target 1 time)

$$= \left(\frac{4}{5} \times \frac{1}{5} \times \frac{1}{5}\right) \times 3$$
$$= \frac{12}{125}$$

(b) P(strike the target 2 times)

$$= \left(\frac{4}{5} \times \frac{4}{5} \times \frac{1}{5}\right) \times 3$$
$$= \frac{48}{125}$$

(c) P(straight the target at least 1 time)

$$= 1 - P(\text{did not strike the target})$$

$$= 1 - \left(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$
$$= \frac{124}{125}$$

(d) P(strike the target at least 2 times)

$$= \frac{48}{125} + \left(\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}\right)$$
$$= \frac{48}{125} + \frac{64}{125}$$
$$= \frac{112}{125}$$

14 P(2 same letters) = $\left(\frac{2}{9} \times \frac{1}{8}\right) + \left(\frac{2}{9} \times \frac{1}{8}\right) + \left(\frac{2}{9} \times \frac{1}{8}\right)$ = $\frac{1}{12}$ SPM SPOT

1 P(Nordin eats either an orange or an apple) = $0.31 + 0.45 - (0.31 \times 0.45)$ = 0.6205*Answer*: C

2 P(Nordin and Chee Meng draw vouchers of the same value) = P(RM5, RM5) + P(RM10, RM10) + P(RM20, RM20)

$$= \left(\frac{4}{10} \times \frac{3}{10}\right) + \left(\frac{3}{10} \times \frac{4}{10}\right) + \left(\frac{3}{10} \times \frac{3}{10}\right)$$
$$= \frac{12}{100} + \frac{12}{100} + \frac{9}{100}$$
$$= \frac{33}{100}$$
Answer: D

3 (a) P(RM20, RM20) =
$$\frac{4}{20} \times \frac{3}{19} = \frac{3}{95}$$

(b) P(RM100, RM100) = $\frac{2}{20} \times \frac{1}{19} = \frac{1}{190}$
(c) P(RM20, RM50) + P(RM50, RM20)
= $\left(\frac{4}{12} \times \frac{6}{11}\right) + \left(\frac{6}{12} \times \frac{4}{11}\right)$
= $\frac{4}{11}$
(d) P(RM50, RM100) + P(RM100, RM50)
= $\left(\frac{6}{12} \times \frac{2}{11}\right) + \left(\frac{2}{12} \times \frac{6}{11}\right)$
= $\frac{2}{11}$