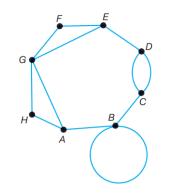
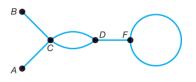


$$n(V) = 4$$

(b) $E = \{(R, R), (R, S), (R, U), (S, U), (S, U), (S, T), (U, T), (T, T)\}$
 $n(E) = 8$
(c) $\sum d(v) = 2 \times n(E) = 2 \times 9 = 16$


4

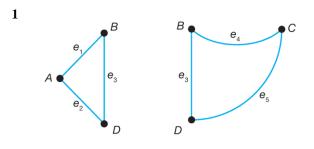
	Graph A
Is the graph a simple graph?	No
Degree of the vertex A	2
Degree of the vertex B	3
Degree of the vertex C	3
Degree of the vertex D	4
Degree of the vertex E	4
Degree of the vertex F	2
Degree of the vertex G	4
Degree of the vertex H	2
Number of edges	12
Sum of degrees	24

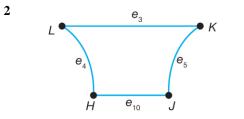

		Graph B
(a)	Is the graph a simple graph?	Yes
(b)	Degree of the vertex A	2
(c)	Degree of the vertex B	2
(d)	Degree of the vertex C	2
(e)	Degree of the vertex D	2
(f)	Degree of the vertex E	3
(g)	Degree of the vertex F	3
(h)	Degree of the vertex G	2
(i)	Degree of the vertex H	2
(j)	Number of edges	9
(k)	Sum of degrees	18

1

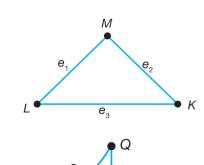
		Graph C
(a)	Is the graph a simple graph?	No
(b)	Degree of the vertex A	3
(c)	Degree of the vertex B	4
(d)	Degree of the vertex C	3
(e)	Degree of the vertex D	3
(f)	Degree of the vertex E	3
(g)	Degree of the vertex F	2
(h)	Degree of the vertex G	4
(i)	Degree of the vertex H	2
(j)	Number of edge	12
(k)	Sum of degrees	24

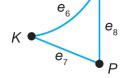
5 $V = \{A, B, C, D, E\}$ $E = \{(A, C), (B, C), (C, D), (C, D), (D, F), (F, F)\}$

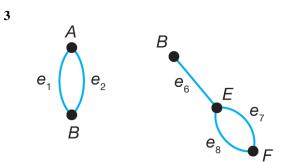


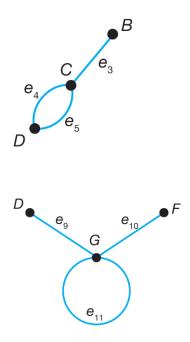

(a)
$$n(V) = 5$$

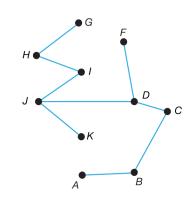
(b) $n(E) = 6$
(c) $\sum d(v) = 2 \times n(E) = 2 \times 6 = 12$


UPSKILL 5.1b

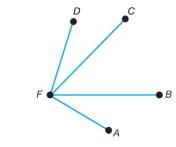

- 1 (a) Directed graph (b) Not a directed graph
- 2 (a) Weighted graph(b) Not a weighted graph



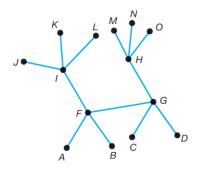




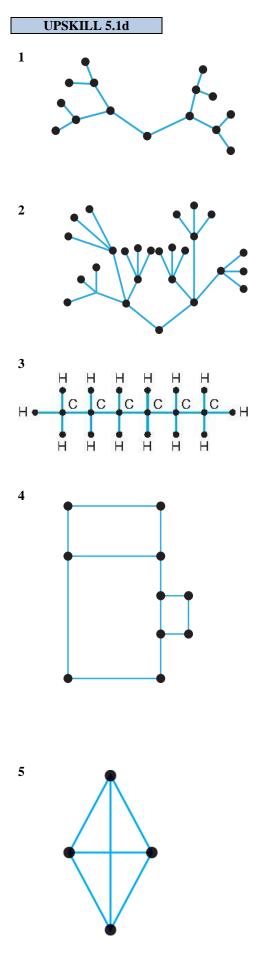
Success Plus Mathematics SPM



(b) Extra three edges. The edges *AK*, *IF* and *GF* have to be removed.


6 It is not a tree because:
(i) there are cycles ABF, FBC and FCD
(ii) n(V) = 5 and n(E) = 7. It does not satisfy n(V) - n(E) = 1.

Extra three edges. The edges *DC*, *CB* and *AB* have to be removed.

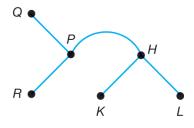


- 7 Yes because all the three properties are satisfied:
- (i) any two vertices are linked by exactly one edge.
- (ii) there are no cycles.
- (iii) n(V) = 14 and n(E) = 13. Hence, the condition n(E) = n(V) 1 is satisfied.
- **8** Not a tree because there are multiple edges between two Cs. The property of a tree is any two vertices must be linked by exactly one edge.

- 4 (a) It is not a tree because:
 (i) there is a cycle *FGHI*.
 (ii) n(V) = 14 and n(E) = 14. It does not satisfy n(V) n(E) = 1.
- (b) Extra one edge. The edge *HI* has to be removed.

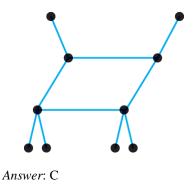
- 5 (a) It is not a tree because:
 (i) there are cycles *IFGH*, *JDFI* and *ABCDJK*,
 (ii) n(V) = 10 and n(E) = 12. It does not
 - satisfy n(V) n(E) = 1.

$$6 (a) A \rightarrow B \rightarrow C (b) A \rightarrow F \rightarrow E \rightarrow D \rightarrow C$$

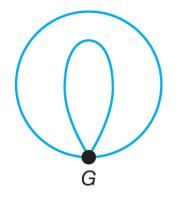

UPSKILL 5.1e

- 1 (a) (i) *Petrol* $6 \text{ km} \rightarrow 1 \text{ litre}$ $133 \text{ km} \rightarrow \frac{133}{6} \text{ litres}$
 - 1 litre $\rightarrow 2.20$ $\frac{133}{6}$ litres $\rightarrow \frac{133}{6} \times 2.20 = \text{RM48.75}$
 - (ii) Toll = $0.136 \times 133 = RM18.10$
 - (b) Kota Bahru → Kuala Terengganu → Pulau Redang (Bus followed by ferry)
 - (c) Kota Bahru → Merang → Pulau Redang (Car followed by ferry)

Summative Practice 5


Multiple-Choice Questions

- 1 Degree of the vertex A is 6. *Answer*: B
- 2 The simple graph is


Answer: D

3 A tree cannot have cycle.

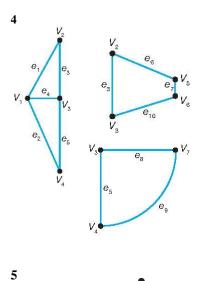
©EPH Publishing (M) Sdn. Bhd. (199801017497) 2025

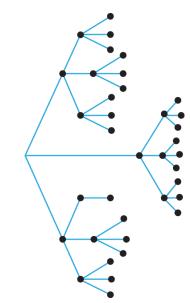
4 The incorrect subgraph is

Answer: D

5 The graphs that represents the given diagram are directed and weighted graph. Answer: C

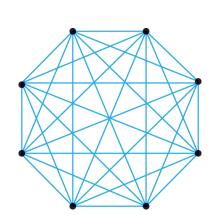
Structured Questions



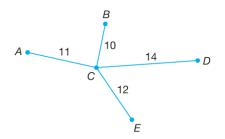

-		
(a)	Is the graph a connected graph?	Yes
(b)	Is the graph a simple graph?	No
(c)	Degree of the vertex A	4
(d)	Degree of the vertex B	4
(e)	Degree of the vertex C	4
(f)	Degree of the vertex D	6
(g)	Degree of the vertex E	4
(h)	Degree of the vertex F	4
(i)	Degree of the vertex G	2
(j)	Total number of edges	14
(k)	Sum of degrees	28

2 (a) Directed (b) Not directed

3 (a) Weighted (b) Not weighted



6 n(V) = 6 n(E) = 8Extra three edges


7

8 The graph that can be used to represent the food chain is a directed graph.


SPM SPOT

- 1 A tree must satisfy the following:
 (a) It cannot have any cycle,
 (b) n(E) = n(V) -1
 Answer: B
- 2 Number of vertices = 5 Number of edges = 8 (extra by 4) The edges that have to be removed are *ED*, *BD*, *AE* and *AB*.

Minimum weight = 11 + 10 + 12 + 14 = 47 *Answer*: D

3 (a)

(b) (i), (ii)

Vertex	n(v)
Α	4
В	5
С	4
D	5
Ε	4
F	2
$\sum d(v)$	24
n(E)	12