

FORM 5

CHAPTER 3

Paper 1

-									
1	D	2	В	3	D	4	А	5	В
6	D	7	В	8	А	9	В	10	Ľ
11	D	12	С	13	С	14	А		

Paper 2

Structured Question

- 1 (a) The ball moves back and forth between two plates. After touching plate *X*, the ball becomes positively charged and is then pushed from plate *X* to plate *Y*. After touching plate *Y*, the ball is charged to negative and then pushed back to *X*.
 - (b) (i) T R mg

T = tension R = repulsive force from X A = attractive force from Ymg = gravitational force

(ii)
$$E = \frac{dV}{dr}$$
$$= \frac{5000\text{V}}{5 \times 10^{-2} \text{ cm}}$$
$$= 100000 \text{ V cm}^{-1}$$

- (c) To to conduct electricity.
- 2 (a) Wrap a constant wire around an insulating core PQ.

(b) (i) Ammeter (ii)

- (c) (i) The meter reading decreases.
 - (ii) When the tank becomes empty, the contact touches the point *P*, the resistance of the circuit increases. The current decreases because the current varies inversely with the resistance.
- (d) Control the current that flows.

(e) The effective resistance in the circuit, $R = 75 + 25 = 100 \Omega$

$$I = \frac{V}{R}$$

$$=\frac{100}{100}$$

- $= 0.12 \,\mathrm{A}$
- 3 (a) (i) A battery labeled 6 V supplies 6 J of electrical energy for every 1 C of charge that passes through it.
 - Before the switch is turned on. the battery does not supply current to the bulb.
 - Voltmeter reading = Electromotive force (dge) of the battery.
 - Dge battery, E = 6.0 V
 - After the switch is turned on, the battery conducts current around the circuit.
 - The gas is passed through the battery and also through the bulb.
 - Voltmeter reading, V = Potential difference across the battery terminals.
 - V = Potential difference supplied to the bulb.
 - Potential difference across the bulb = 5.6 V.
 - A voltmeter reading that drops from 6.0 V to 5.6 V indicates the battery has an internal resistance, r.
 - Potential difference loss, E V = Ir, where *I* is the current supplied by the battery through the bulb.

(b) Advantages:

· The amount of internal resistance is smaller

$$\left(\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \dots\right)$$

- Can last longer, because the amount of energy stored in the batteries is more. Disadvantages: The effective dge is the same as the dge of one battery.
- (c) Battery life is caused by the active chemicals in the battery.
 For older batteries, the resistance in the battery increases to a
 - For older batteries, the resistance in the battery increases to a higher value.
 - When the battery is connected to the mental, its large internal resistance causes a large potential difference loss in the battery.
 - The small potential difference left across the battery terminals supplied to the mental is not high enough to light the bulb.
 - Old batteries need to be changed to a suitable power supply.
 - Mains electricity supply (240 V) needs to lower the potential difference to a value that corresponds to the potential difference on the mental label, which is the working voltage of the mental.
 - The voltage to rj a is the potential difference that needs to be supplied to turn on the mental under normal conditions.
 - Suitable fuses are installed in electrical circuits to prevent fire and mental damage.