

## Answer

## Constant: Pendulum mass, m and amplitude of oscillation FORM (iii) CHAP' protractor, pendulum bob, meter rule and stopwatch. (iv) Paper 1 Two pieces of plywood 1 C 3 A **4** A 5 D **2** B 9 A 6 B 7 C 8 A 10 C Thread Paper 2 **Structured Question** 1 (a) (i) Derived quantity Retort stand Pendulum with clamp (ii) Base quantity bob (b) (i) kg m s<sup>-2</sup> (ii) m (c) Newton (N) (v) 1. (d) $N m^{-1}$ 2. **2** (a) (i) 3.72 s point is $\ell = 20.0$ cm. (ii) Extrapolation 3. (iii) Continuous graph pattern 10° and released to swing. (b) $\ell$ is directly proportional to T 4. (c) $22 s^2 m^{-1}$

## **Essay Questions**

- **3** (a) The period of oscillation depends on the length of the pendulum.
  - (b) The longer the pendulum, the longer the swing period.
  - (c) (i) To determine whether the period of swing of a pendulum depends on the length of the pendulum.
    - Variables: (ii) Manipulated: Pendulum length,  $\ell$ Responding: Oscillation period, T

## (vi) Data tabulation:

Thread, two pieces of plywood, retort stand and clamps,

- The apparatus is prepared as in the figure above. The length of the pendulum,  $\ell$  is adjusted so that the length from the centre of the pendulum to the hanging
  - The sling is displaced laterally at an angle of less than
  - The time,  $t_1$  of 20 complete oscillations is measured and recorded.
  - Time,  $t_2$  for another 20 complete swings is measured 5. and recorded.
  - Steps 2 to 5 are repeated for  $\ell = 30.0$  cm, 40.0 cm, 6. 50.0 cm, 60.0 cm and 70.0 cm.
  - 7. Data is recorded in a table.
  - A graph of period of oscillation, t against length,  $\ell$  and 8. a graph of period of oscillation squared,  $T^2$  against length,  $\ell$  plotted against the data.

| ℓ (cm) | Time for 20 oscillations, <i>t</i> (s) |                |            | t                   | $T^2(c^2)$ |
|--------|----------------------------------------|----------------|------------|---------------------|------------|
|        | <i>t</i> <sub>1</sub>                  | t <sub>2</sub> | Average, t | $T=\frac{1}{20}(s)$ | 1 (8)      |
| 20.0   |                                        |                |            |                     |            |
| 30.0   |                                        |                |            |                     |            |
| 40.0   |                                        |                |            |                     |            |
| 50.0   |                                        |                |            |                     |            |
| 60.0   |                                        |                |            |                     |            |
| 70.0   |                                        |                |            |                     |            |

(vii) Data analysis



Based on the graph of T against  $\ell$ , the period of oscillation, T increases as the length of the pendulum,  $\ell$  increases. Based on the graph of  $T^2$ against  $\ell$ ,  $T^2$  is directly proportional to  $\ell$  because it is a graph of a straight line through the origin.



Conclusion: The period of oscillation of the pendulum increases as the length of the pendulum increases.