

⁴ s = 8 - 2t

- 5 (a) Duration Sheila stopped = 10 5 minutes = 5 minutes
 - (b) Total distance = 50 km

(c) Speed =
$$\frac{50 - 20}{5}$$
 km min⁻¹
= 6 km min⁻¹

- (d) Sheila moved 20 km at a speed of 4 km min⁻¹ over a period of 5 minutes before she stopped for 5 minutes. She then continued to move another 30 km at a speed of 6 km min⁻¹ for the last 5 minutes.
- 6 (a) Duration when the particle stopped moving = (8 - 5) seconds = 3 seconds
 - (b) Average speed = 3.125 m s^{-1}

$$\frac{10 \text{tal distance travelled}}{\text{Total time taken}} = 3.125$$

$$\frac{50}{t} = 3.125$$
$$t = \frac{50}{3.125} \text{ s}$$
$$= 16 \text{ s}$$

(c) Speed =
$$\frac{(0-35) \text{ m}}{(16-8) \text{ s}}$$

= -4.375 m s⁻¹

The particle moved 35 m at a speed of 4.375 m s⁻¹ for a period of 8 s.

(a) p = 205 + 156.5= 361.5 q = 156.5r = 150 + 60= 210

Time

(minutes)

25

20

30

10 | 15

2

0

- (b) Average speed of Zhong = $\frac{\text{Total distance}}{\text{Total time}}$ = $\frac{354 \text{ km}}{4 \text{ h}}$ = 88.5 km h⁻¹
- (c) Average speed of Aiman = $\frac{354 \text{ km}}{3 \text{ h}}$ = 118 km h⁻¹
 - The difference in speed between Aiman and Zhong = $(118 - 88.5) \text{ km h}^{-1}$ = 29.5 km h⁻¹
- (d) Total time = $\frac{\text{Total distance}}{\text{Total time}}$

$$= \frac{354 \text{ km}}{800 \text{ km h}^{-1}}$$

= 0.4425 h × 60
= 26.55 minutes
 $\approx 27 \text{ minutes}$

Arrival time of Aiman in Singapore = 1000 hours + 27 min = 1027 hours or 10.27 a.m.

Self Test 2

2 (a) v = 20 - 3t for $0 \le t \le 6$ where v is the speed in m s⁻¹ and t is the time in seconds.

Time, t (seconds)	0	6
Speed , v (m s ⁻¹)	20	2

(b) v = 30t for $0 \le t \le 7$ where v is the speed in km h⁻¹ and t is the time in hours.

3 (a) Total distance =
$$80(2.5) - \frac{1}{2}[2.5 + (1.5 - 0.5)](80 - 50)$$

= $200 - 52.5$
= 147.5 km
(b) Total distance = $\frac{1}{2}(12 + 20)(14) + \frac{1}{2}(20)(18 - 14)$
= $224 + 40$
= 264 m
4 (a) Total distance = $\frac{1}{2}(10 + 50)\left(\frac{5}{60}\right) + \left(\frac{10-5}{60}\right)(50) + \frac{1}{2}(50 + 100)\left(\frac{20-10}{60}\right)$
= $2.5 + 4\frac{1}{6} + 12.5$
= $19\frac{1}{6} \text{ km}$
Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$
= $\frac{19\frac{1}{6}}{20} \text{ km h}^{-1}$
= 57.5 km h^{-1}
(b) Total distance = $\frac{1}{2}(10 + 18)(2) + \frac{1}{2}(5 - 2)(10)$
= $28 + 15$
= 43 m
Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$
= $\frac{43}{5} \text{ m s}^{-1}$
= 8.6 m s^{-1}
5 (a) Rate of change of speed = $\frac{15-45}{15} \text{ m s}^{-2}$
= -2 m s^{-2}
(b) Duration = $(35 - 15) \text{ s}$
= 20 s
(c) Rate of change of speed = $\frac{(60-15) \text{ m s}^{-1}}{(60-35) \text{ s}}$
= 1.8 m s^{-2}
Distance = $\frac{1}{2}(15 + 60)(25)$
= 937.5 m
The robot moved 937.5 m with an acceleration of 1.8 m s^{-2}
in the last 25 seconds.
(d) Total distance = $\frac{1}{2}(15 + 45)(15) + (35 - 15)(15) + \frac{1}{2}(15 + 60)(25)$
= $450 + 300 + 937.5$
= 1687.5 m
Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$
= $\frac{1}{2}(15 + 60)(25)$
= $450 + 300 + 937.5$
= 1687.5 m
Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$
= $\frac{1}{2}(24 + 36)(36 - 12)$
= 720 m
(c) $\frac{36-24}{36-12} = \frac{1}{3} \times \frac{-(0-36)}{t-36}$
 $\frac{12}{2} = \frac{12}{t-36}$

t - 36 = 12(2)t = 24 + 36=60 7 (a) Duration = 5 seconds (b) $5(5) + \frac{1}{2}(5+v)(15-5) = 2 \times \frac{1}{2}(7)(v)$ 25 + 5(5 + v) = 7v25 + 25 + 5v = 7v2v = 50v = 25(c) Rate of change of speed = $\frac{0-25}{7}$ m s⁻² $=-3\frac{4}{7}$ m s⁻² or -3.57 m s⁻² SPM PRACTICE Paper 1 **1** C Duration = 25 – 15 = 10 s

2 D Speed of
$$JK = \frac{8-2}{10}$$
 km min⁻¹
= 0.6 km min⁻¹

50)

Speed of
$$MN = \frac{8}{40 - 30}$$
 km min⁻¹
= 0.8 km min⁻¹

3 B Acceleration =
$$\frac{45-30}{60-45}$$
 m s⁻²
= $\frac{15}{15}$ m s⁻²
= 1 m s⁻²

Total distance =
$$45(30) + \frac{1}{2}(30 + 45)(60 - 45)$$

= 1 350 + 562.5 m
= 1 912.5 m
Average speed = $\frac{1912.5}{60}$ m s⁻¹

$$60 = 31.875 \text{ m s}^{-1}$$

A uniform speed B uniform speed

С speed increases

5 D Total distance = average speed × total time
= 90 km
$$h^{-1}$$
 × 2.5 h
= 225 km

Paper 2

4 C

Section A

1 (a) Distance travelled by Linda = 90 km

Distance travelled by Rozita =
$$\frac{1}{2}(30+90)(0.9) + \frac{1}{2}$$

(1.5 - 0.9)(90)
= 54 + 27
= 81 km
Difference in the distance travelled = 90 - 81 km
= 9 km
(b) Distance during deceleration = $\frac{1}{2}(1.5 - 0.9)(90)$
= 27 km
2 Rate of change of speed in the first 10 minutes
= $\frac{(90-60) \text{ km h}^{-1}}{(10 \div 60) \text{ h}}$

 $= 180 \text{ km h}^{-2}$

3

Rate of change of speed of the last 20 minutes

 $=\frac{(0-90) \,\mathrm{km} \,\mathrm{h}^{-1}}{(20\div60) \,\mathrm{h}}$

 $= -270 \text{ km h}^{-2}$

Distance for the first 10 minutes $=\frac{1}{2}\left(\frac{10}{60}\right)(60+90)$ km = 12.5 km

Distance between the 10^{th} minute and the 40^{th} minute

$$= \left(\frac{30}{60} \times 90\right) \text{km}$$
$$= 45 \text{ km}$$

Distance for the last 20 minutes $=\frac{1}{2}\left(\frac{20}{60}\right)(90)$ km = 15 km

For the first 10 minutes, Sharifah moved 12.5 km with an acceleration of 180 km h^{-2} .

Between the 10^{th} minute to the 40^{th} minute, Sharifah moved another 45 km at a uniform speed of 90 km h⁻¹.

In the last 20 minutes, Sharifah moved 15 km with a deceleration of 270 km $h^{-2}.$

- **3** (a) 1840 hours
 - (b) 0 km h⁻¹ (Shin Ling did not move from the 15th minute to 40th minute)
 - (c) Average speed of Aminah $=\frac{6 \text{ km}}{(60-15) \div 60 \text{ h}}$

 $= 8 \text{ km h}^{-1}$

4 20 min
$$=\frac{20}{60}h$$

 $=\frac{1}{3}h$
Distance= (2 m s⁻¹)(20 × 60 s)
 $= 2400$ m

$$= 2.4 \text{ km}$$

Duration for return journey = $\frac{2400 \text{ m}}{2.5 \text{ m s}^{-1}}$ = 960 s $= \frac{4}{15} \text{ h}$ $\text{Time} = 6\frac{1}{3} + \frac{4}{15}$ $= 6\frac{3}{5}$

Section B

5 (a) Duration =
$$(3.5 - 1.5) \times 60 \min$$

= 120 min
(b) $\frac{1}{2}(3.5 + 2)(v - 26) + \frac{1}{2}(v - 26 + v)(4 - 3.5) + \frac{1}{2}(1)(v)$
= 357 km
 $2.75v - 71.5 + 0.5v - 6.5 + 0.5v = 357$
 $3.75v = 357 + 78$
= 435
 $v = 116 \text{ km h}^{-1}$
(c) Rate of change of speed = $\frac{0 - 116}{1} \text{ km h}^{-2}$
= -116 km h^{-2}

4