

# **Fully-Worked Solutions**





8 (a) n(G only) = 100 - 23= 77 (b)  $n(\xi) = n(P) + n(G \text{ only})$ = 85 + 77

$$= 162$$

9 (a) n(F) + n(C) + n(S) = 98 + 27 + 20 + x + 27 + x + 15 + 10x + 3 + 20 + 35 + 15 + x(6 + 4 + 3) units = 260 + 13x

$$(13 \text{ units} = 260 + 13x)$$
  
13 units  $= 13(20 + x)$ 

1 units 
$$= 15(20 + x)$$
  
1 units  $= 20 + x$ 

$$n(F) = 98 + 27 + 20 + x$$

$$6 \text{ units } \times (20 + x) = 145 + x$$
$$120 + 6x = 145 + x$$

$$5x = 25$$

$$x = 5$$

(b) Total number of students who prefer one type of books only = 98 + 10(5) + 3 + 35

(c) Total number of students who do not prefer scientific books
 = 98 + 27 + 10(5) + 3
 = 178

(d) Total number of students who involve in the survey  
= 
$$98 + 27 + 5 + 20 + 35 + 15 + 10(5) + 3$$
  
=  $253$ 

## Self Test 2

- 1 (a)  $P \cup Q = \{a, b, c, d, e, k, t\}$ 
  - (b)  $P \cup R = \{a, b, c, d, e, i, o, u\}$
- (c)  $Q \cup R = \{a, e, i, o, u, k, t\}$ (d)  $P \cup Q \cup R = \{a, b, c, d, e, i, k, o, t, u\}$
- **2** (a)  $\xi = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 3, 5, 7, 9\}$$

$$B = \{1, 2, 3, 4, 5\}$$

$$C = \{1, 2, 3, 4, 5\}$$
(i)  $A \cup B = \{1, 2, 3, 4, 5, 7, 9\}$ 
(ii)  $B \cup C = \{1, 2, 3, 4, 5, 6, 7, 9\}$ 
(iii)  $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 9\}$ 
(iv)  $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 9\}$ 
(b) (i)  $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$ 

(b) (i) 
$$A \cup B$$











 $P \cap Q \cap R' = \{4, 10\}$  $n(P \cap Q \cap R') = 2$ 



the fruits = 280 - 132 - 64 - 73= 11

Total number of students who prefer both types of fruits = 38 + 23

= 61

 $Difference = 61 - 11 \\= 50$ 

# Paper 2

#### Section A 1 (a), (b) $\xi = A \cup B \cup C$ , $C \subset A$ and $A \cap B = \phi$ . $(A \cap C') \cup B$ ٤ В **2** (a) $K \cap L'$ (b) $(L \cap M)' \cup K$ L М М **3** (a) (i) $X \subset Y$ (ii) $X \cup Y = Y$ (b) $X \cap \overline{Y'} = \{ \}$ or $\phi$ (c) Shaded region = $X' \cap Y$ ξ 4 $n(X) = n(Y \cup Z)'$ 11w + 6 + 3 + 4 = 11w + 6w + 1V X 6w = 13 - 16 11w4ww = 23 $n[(X \cap Y) \cup Z']$ 4 2 = 6 + 3 + 11(2) + 4(2) +7 6(2) + 16w + 1= 52

## Section B

5 (a) 
$$n(D) = 43\% \times 1500$$
  $n(M) = 51\% \times 1500$   
 $= 645$   $= 765$   
 $n(U) = 40\% \times 1500$   
 $= 600$   
 $n(D \cap M) = 16\% \times 1500$   $n(D \cap U) = 15\% \times 1500$   
 $= 240$   $= 225$   
 $n(M \cap U) = 13\% \times 1500$   $n(D \cap M \cap U) = 8\% \times 1500$   
 $= 195$   $= 120$   
 $\xi$ 



(b) Total number of visitors who did not buy any durian = 1500-645-450-75-300= 30

## Section C

```
C = \{2, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32\}
```

(a) (i)  $A \cap B = \{2\}$ (ii)  $A \cap C = \{2, 23, 29\}$ (iii)  $B \cap C = \{2, 12, 20, 22, 24, 26, 28, 32\}$ (iv)  $A \cap B \cap C = \{2\}$ 



(c) (i)  $(A \cup B \cup C)'$ 



(ii)  $A' \cap (B' \cap C)$ 



(iii)  $(A \cap C) \cup (B \cup C)'$ 



(d) (i)  $D = \{2, 23, 29\}$  n(D) = 3Number of subset  $= 2^3$  = 8(ii) Subset  $D = \{ \}, \{2\}, \{23\}, \{29\}, \{2, 23\}, \{2, 29\}, \{23, 29\}, \{2, 23, 29\}$ 

5