Fully-Worked Solutions

FORM 5

CHAPTER 5 Probability Distribution

Self Test 1

1 (a) Discrete random variable

(b)
$$X = \{0, 1, 2, 3\}$$

(c) $P(X=0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
 $P(X=1) = 3 \times (\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}) = \frac{3}{8}$
 $P(X=2) = 3 \times (\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}) = \frac{3}{8}$
 $P(X=3) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
 $\boxed{\begin{array}{c|c} X = x & 0 & 1 & 2 & 3 \\ \hline P(X=x) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\ \hline \end{array}}$

- **2** (a) Discrete random variable because the scores obtained in an archery game can only take the values on the targets.
 - (b) Continuous random variable because the evaluation marks for students' skills can have any value.
 - (c) Continuous random variable because the mass of eggs can take any value.
 - (d) Discrete random variable because the number of cars is countable.
 - (e) Continuous random variable because the time taken is in hours, minutes and seconds.
- 3 (a) $X = \{x : x = \text{total numbers obtained from both dice}\}\$ $X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

(b)	X = x	P(X=x)
	2	$\frac{1}{36}$
	3	$\frac{2}{36} = \frac{1}{18}$
	4	$\frac{3}{36} = \frac{1}{12}$
	5	$\frac{4}{36} = \frac{1}{9}$
	6	$\frac{5}{36}$
	7	$\frac{6}{36} = \frac{1}{6}$
	8	$\frac{5}{36}$
	9	$\frac{4}{36} = \frac{1}{9}$
	10	$\frac{3}{36} = \frac{1}{12}$
	11	$\frac{2}{36} = \frac{1}{18}$
	12	$\frac{1}{36}$

(c) Probability distribution graph for *X*:

4 (a) Discrete random variable because *x* can take any integer values such as 2, 3, 4, 5 and 6.

(b)
$$k + 0.05 + 2k + 0.3 + k + 0.2 = 1$$

 $4k + 0.55 = 1$
 $4k = 0.45$
 $k = 0.1125$
(c) $P(X_{-2}) = P(X_{-2}) + P(X_{-2})$

(c)
$$P(X = \text{odd number}) = P(X = 3) + P(X = 5)$$

= 0.05 + k
= 0.05 + 0.1125
= 0.1625

Self Test 2

1 Standard deviation = 7, Variance = npq = 49 P(bread sold) = 0.98 q = 1 - 0.98 = 0.02∴ n(0.98)(0.02) = 49n = 2500

2 (a)
$$P(\text{female teachers}) = 0.8$$

 $n = 20, X = \text{number of female teachers}$

(i)
$$P(X=10) = {}^{20}C_{10} (0.8)^{10} (0.2)^{10}$$

= 0.00203

(ii) 25% of female teachers =
$$\frac{25}{100} \times 20$$

= 5
 $P(X = 5) = {}^{20}C_5 (0.8)^5 (0.2)^{15}$

$$= 1.665 \times 10^{-7}$$

b) Mean =
$$np$$

36 = $n(0.8)$
 $n = 45$

3 (a)
$$p = 0.4, n = 5$$

 $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$
 $= {}^{5}C_{3}(0.4)^{3}(0.6)^{2} + {}^{5}C_{4}(0.4)^{4}(0.6)^{1} + {}^{5}C_{5}(0.4)^{5}(0.6)^{0}$
 $= 0.2304 + 0.0768 + 0.01024$
 $= 0.3174$

(b) n = 7, p = 0.4Mean = np= 7(0.4) = 2.8 ≈ 3 Variance = npq= 7(0.4)(0.6) = 1.68

1

= 180Variance = npq = 2 000(0.09)(0.91) = 163.8 Standard deviation = $\sqrt{\text{Variance}}$ = $\sqrt{163.8}$ = 12.8

Self Test 3

- distribution N(0, 1)(b) Area of shaded region = P(0 < Z < 2)
 - = 0.5 P(Z > 2)= 0.5 0.0228= 0.4772

SPM Practice

1
$$n = 20, P(\text{pass}) = \frac{2}{3}$$

(a) $\frac{75}{100} \times 20 = 15$
 $P(X = 15) = {}^{20}C_{15} \left(\frac{2}{3}\right)^{15} \left(\frac{1}{3}\right)^{5}$
 $= 0.1457$
(b) $P(X = 10) = {}^{20}C_{10} \left(\frac{2}{3}\right)^{10} \left(\frac{1}{3}\right)^{10}$
 $= 0.0543$

2

2
$$p = \frac{2}{7}, n = 10$$

(a) $P(X \le 1) = P(X = 0) + P(X = 1)$
 $= {}^{10}C_{0}\left(\frac{2}{7}\right)^{0}\left(\frac{5}{7}\right)^{10} + {}^{10}C_{1}\left(\frac{2}{7}\right)^{1}\left(\frac{5}{7}\right)^{0}$
 $= 0.03457 + 0.1383$
 $= 0.1729$
(b) $P(\text{more than one girl)}$
 $P(X > 1) = 1 - P(X \le 1)$
 $= 1 - 0.1729$
 $= 0.8271$
Number of groups $= 0.3271(100)$
 $= 82.71$
 $= 82$
3 (a) $n = 10, P(\text{correct}) = \frac{1}{4}$
 $P(\text{All answers are wrong}) = P(X = 0)$
 $= {}^{10}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{10}$
 $= 0.0563$
(b) $P(X > 7) = P(X = 8) + P(X = 9) + P(X = 10)$
 $= {}^{10}C_{0}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2} + {}^{10}C_{10}\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^{0}$
 $= 0.000386 + 2.861 \times 10^{-3} + 9.54 \times 10^{-7}$
 $= 0.000416$
4 $P(\text{like to eat burger}) = 0.35, n = 9$
(a) (i) $P(X = 5) = {}^{0}C_{1}(0.35)^{5}(0.65)^{4}$
 $= 0.1181$
(ii) $P(X = 7) = 1 - P(X = 8) - P(X = 9)$
 $= 1 - {}^{2}C_{0}(0.35)^{5}(0.65)^{4}$
 $= 0.9986$
(b) Mean $= np$
 $= 520(0.65)$
 $= 338$
Variance $= npq$
 $= 520(0.65)(0.35)$
 $= 118.3$
Standard deviation $= \sqrt{118.3} = 10.88$
5 $P(-k \le Z \le 0) = 0.381$
 $0.5 - P(Z < -k) = 0.381$
 $0.5 - P(Z < k) = 0.381$
 $P(Z > k) = 0.119$
 $k = 1.18$
(b) $P(X > 262) = 0.25$
 $P(Z < -1)$
 $= P(Z < -1)$
 $= P(Z < -1)$
 $= 0.1587$
(b) $P(X > 262) = 0.25$
 $P(Z > \frac{262 - \mu}{10} = 0.674$
 $\mu = 255.26$ g
 $\therefore r = 255.26$ g

Paper 2

1 (a) Discrete random variable because the number of seats must be an integer value.

FULLY-WORKED SOLUTIONS

3 (a) Number of packets rejected = 10 000(0.03) = 300

(b)
$$\mu = 550, \sigma = 22$$

 $P(X < k) = 0.01$
 $P\left(Z < \frac{k - 550}{22}\right) = 0.01$
 $P\left(Z > \frac{550 - k}{22}\right) = 0.01$
 $\frac{550 - k}{22} = 2.326$
 $k = 498.83 \text{ g}$
 $P(X > m) = 0.02$

$$P\left(Z > \frac{m - 550}{22}\right) = 0.02$$
$$\frac{m - 550}{22} = 2.054$$
$$m = 595.188 \text{ g}$$

Thus, the range of mass for each packet to not get rejected = 498.83 < x < 595.19

(c)
$$P(X > x) = 0.05$$

 $P(Z > \frac{x - 550}{22}) = 0.05$
 $\frac{x - 550}{22} = 1.645$
 $x = 586.2 \text{ g}$

4