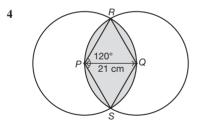


Fully-worked Solutions

$$= 21 \text{ cm}$$
Length of arc $PQ = \frac{140^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21$


$$= 51 \frac{1}{3} \text{ cm}$$

Answer: C

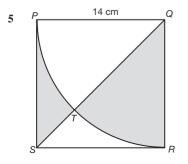
3 Length of arc
$$PQR = \frac{210^{\circ}}{360^{\circ}} \times 2 \times \pi \times 8$$

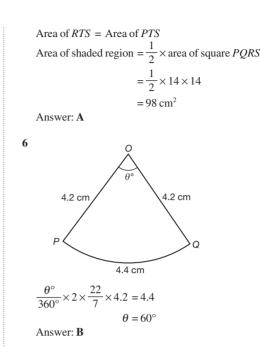
= $\frac{28}{3}\pi$ cm

Perimeter of shaded region =
$$8 + 8 + \frac{26}{3}\pi$$

= $\frac{28}{3}\pi + 16$

Answer: **D**



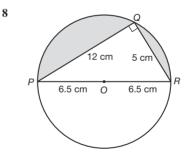

Length of arc RQS

$$=\frac{120^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21$$

= 44 cm

Perimeter of shaded region
$$= 44 + 44$$

= 88 cm



7 Area of shaded region = Area of semicircle *PQR* + Area of semicircle *PSO* + Area of semicircle *RTO*

$$= \left(\frac{1}{2} \times \frac{22}{7} \times 14^{2}\right) + \left(\frac{1}{2} \times \frac{22}{7} \times 7^{2}\right) + \left(\frac{1}{2} \times \frac{22}{7} \times 7^{2}\right) = 462 \text{ cm}^{2}$$

Answer: **B**

Area of shaded region

$$= \left(\frac{1}{2} \times \pi \times 6.5^2\right) - \left(\frac{1}{2} \times 12 \times 5\right)$$
$$= \left(21 \frac{1}{8} \pi - 30\right) \text{ cm}^2$$

Answer: C

Section B

- 1 (a) Line OR =Radius
 - (b) Line PQ = Chord
 - (c) Shaded region X = Segment
 - (d) Shaded region Y = Sector
- 2 (a) The perpendicular bisectors of two non-parallel chords meet at the centre of the circle. (\checkmark)
 - (b) Equal chords or chords of the same length produce arc of the same length. (✓)
 - (c) Chords which are equidistant from the centre of the circle are equal in length. (\checkmark)
 - (d) The area of sector is 4 times when the angle of the sector is double. (X)

3 (a) Area of a circle = πr^2

Circumference =
$$\pi d = 2\pi r$$

(i) $A = \pi p^{2}$ $Area = \pi (2p)^{2}$ $= 4\pi p^{2}$ = 4A(ii) $C = 2\pi p$

$$= 4A$$
(ii) $C = 2\pi p$
Circumference $= 2\pi(2p)$
 $= 2(2\pi p)$
 $= 2C$

- (b) (i) The area of a sector with a radius of 3 cm with an angle of sector 60° < the area of a sector with a radius of 6 cm with an area of sector 30° .
 - (ii) The length of arc of a sector of radius 3 cm with an angle of sector 60° = the length of arc of a sector of radius 6 cm with an angle of sector 30° .

Section C

1 (a) $\pi r^2 = 154$ $\frac{22}{7}r^2 = 154$ $r^2 = 154 \times \frac{7}{22}$ $r^2 = 49$ $r = \sqrt{49}$ = 7 cmCircumference $= 2\pi r$ $= 2 \times \frac{22}{7} \times 7$ = 44 cm(b) (i) Length of arc *BC* $= \frac{\theta}{360^\circ} \times 2\pi r$ $= \frac{120^\circ}{360^\circ} \times 2 \times \frac{22}{7} \times 14$ $= \frac{88}{3} \text{ cm}$ Perimeter of the whole diagram $= \frac{88}{3} + 14 \times 3$

 $=71\frac{1}{3}$ cm

 $=\frac{1}{2} \times 14 \times 12.12$ $= 84.84 \text{ cm}^2$ Area of sector OBC $=\frac{\theta}{360^{\circ}}\times\pi r^2$ $=\frac{120^{\circ}}{360^{\circ}}\times\frac{22}{7}\times14^{2}$ $= 205.33 \text{ cm}^2$ Area of whole diagram = 84.84 + 205.33 $= 290.2 \text{ cm}^2$ **2** (a) CD = 6 cm $OC = \sqrt{4^2 + 3^2}$ = 5 cmThus, the radius of the circle is 5 cm. (b) (i) Area of shaded region = Area of sector OPOR – Area of semicircle $=\left(\frac{240^{\circ}}{360^{\circ}}\times\frac{22}{7}\times14^{2}\right) \left(\frac{1}{2} \times \frac{22}{7} \times 7^2\right)$ $=410\frac{2}{3}-77$ $=333\frac{2}{3}$ cm² (ii) Length of arc PQR $=\frac{240^{\circ}}{360^{\circ}}\times2\times\frac{22}{7}\times14$ $=58\frac{2}{3}$ cm Length of arc OSR $=\frac{180^{\circ}}{360^{\circ}}\times2\times\frac{22}{7}\times7$ = 22 cmPerimeter of shaded region $= 58\frac{2}{3} + 22 + 14$ $= 94\frac{2}{3}$ cm

(ii) Area of $\triangle OAB$

2