Fully-worked Solutions

Practice 9

Formative Practice

- 1 A Correct
 - B Wrong
 - C Correct
 - D Correct
 - Answer: **B**

2 (a) (i) Gradient AB

$$=\frac{5-(-1)}{1-(-2)}$$

= 2

- (ii) *y*-intercept of the straight line = 3
- (b) (i) The gradient of the straight line is the coefficient of x of y = 2x + 3.
 - (ii) The *y*-intercept of the straight line is the constant term of y = 2x + 3.

(c)	Equation of straight line	Gradient:
	y = mx + c	<i>y</i> -intercept:

3

,

Equation of straight line	Gradient	y-intercept
(a) $y = 4x + 7$	4	7
(b) $y = -2x + 10$	-2	10
(c) $y = -x$	-1	0
(d) $y = 6$	0	6

4 (a)
$$-4y = -5x + 8$$

 $y = \frac{-5x + 8}{-4}$
 $y = \frac{5}{4}x - 2$
(b) $\frac{y}{3} = -\frac{x}{10} + 1$
 $y = -\frac{3}{10}x + 3$
(c) $\frac{7}{3}x - y = 7$
 $\frac{7}{3}x - y}{7} = 1$

$$\frac{x}{3} - \frac{y}{7} = 1$$
5 (a) $4x - y = 8$
 $y = 4x - 8$ [\checkmark]
(b) $-4x + y = 8$
 $y = 4x + 8$
(c) $-\frac{x}{2} + \frac{y}{8} = 1$
 $-4x + y = 8$
 $y = 4x + 8$
(d) $\frac{x}{2} - \frac{y}{8} = 1$
 $4x - y = 8$
 $y = 4x - 8$ [\checkmark]

6

1

1

т

С

Straight line	Form y = mx + c	Gradient	y-intercept
(a) $-2x + 3y = 9$	$y = \frac{2}{3}x + 3$	$\frac{2}{3}$	3
(b) $\frac{x}{4} + \frac{y}{6} = 1$	$y = -\frac{3}{2}x + 6$	$-\frac{3}{2}$	6

7 (a) x = 2, y = 5

$$4x - 3 = 4 \times 2 - 3$$
$$= 5$$
$$y = 4x - 3$$

$$y = 4x - 3$$

Point *A* that lies on the straight line y = 4x - 3 satisfies the equation of the straight line y = 4x - 3.

(b)
$$x = -1, y = -3$$

 $4x - 3 = 4 \times (-1) - 3$
 $= -7$
 $y \neq 4x - 3$

Point *B* that does not lie on the straight line y = 4x - 3 does not satisfy the equation of the straight line y = 4x - 3.

8 x + 2y = 6

(0, 2):
$$x + 2y = 0 + 2(2)$$

= 4
≠ 6
∴ (0, 2) does not lie on the straight line.
(4, 1): $x + 2y = 4 + 2(1)$
= 6
∴ (4, 1) lies on the straight line.
(-2, 4): $x + 2y = -2 + 2(4)$
= 6

$$\therefore (-2, 4) \text{ lies on the straight line.}$$

$$(2, 4): \quad x + 2y = 2 + 2(4)$$

$$= 10$$

$$\neq 6$$

$$\therefore (2, 4) \text{ does not lie on the straight line.}$$

$$(12, -3): \quad x + 2y = 12 + 2(-3)$$

$$= 6$$

$$\therefore (12, -3) \text{ lies on the straight line.}$$

$$(-3, 9): \quad x + 2y = -3 + 2(9)$$

$$= 15$$

$$\neq 6$$

 \therefore (-3, 9) does not lie on the straight line.

10

(a)	Straight line	Gradient
	AB	$\frac{1}{2}$
	CD	$\frac{1}{2}$
	EF	$\frac{1}{2}$

(b) The gradients of parallel straight lines are equal.

11 (a) y = x + 3(b) 5x + y = 10(c) $\frac{x}{3} + \frac{y}{2} = 1$ (d) 4y = x - 4 x - y = 4 x - y = 4 x - y = 1 $x + \frac{y}{5} = 1$ 12 (a) y = 5(c) y = -3(b) x = 4(d) x = -313 (a) The equation of straight line is y = 1. 1 (b) The equation of straight line is x = 7. (c) The equation of straight line is y = 2x + 6. Х (d) y = -3x + cSubstitute x = 1, y = 0, 0 = -3(1) + c*c* = 3 The equation of straight line is y = -3x + 3. 14 (a) y = 4x + cSubstitute x = 3, y = 4, 4 = 4(3) + c4 = 12 + cc = -8The equation of straight line is y = 4x - 8. (b) y = -x + cSubstitute x = -1, y = 3, 3 = -(-1) + c3 = 1 + cc = 2The equation of straight line is y = -x + 2. 1 15

X

5 (a)
$$y = \frac{-x}{2} + c$$

Substitute $x = 4, y = 0,$
 $0 = \frac{1}{2}(4) + c$
 $0 = 2 + c$
 $c = -2$

The equation of the straight line *k* is $y = \frac{1}{2}x - 2$.

(b)
$$y = -2x + c$$

Substitute $x = -1$, $y = 7$,
 $7 = -2(-1) + c$
 $7 = 2 + c$
 $c = 5$

The equation of the straight line k is y = -2x + 5.

Straight line	<i>x</i> -intercept	y-intercept	Equation of straight line in the form $\frac{x}{a} + \frac{y}{b} = 1$
(a) y z^2 z x	-2	2	$-\frac{x}{2} + \frac{y}{2} = 1$
(b) y y x x	3	-1	$\frac{x}{3} - y = 1$
(c) y -3 0 -2 x	-3	-2	$-\frac{x}{3} - \frac{y}{2} = 1$
(d)	4	2	$\frac{x}{4} + \frac{y}{2} = 1$

17 (a)
$$m = \frac{-6-2}{-1-3}$$

 $= \frac{-8}{-4}$
 $= 2$
(b) (i) $2 = 2 \times 3 + c$
 $2 = 6 + c$
 $c = -4$
(ii) $-6 = 2 \times (-1) + c$
 $-6 = -2 + c$
 $c = -4$
18 (a) $m = \frac{1+3}{9-5}$
 $= \frac{4}{4}$
 $= 1$
 $y = x + c$

16

Substitute x = 9, y = 1, 1 = 9 + c c = -8The equation of the straight line is y = x - 8. (b) $m = \frac{8+7}{1+2}$ $= \frac{15}{3}$ = 5 y = 5x + cSubstitute x = 1, y = 8, 8 = 5(1) + c 8 = 5 + c c = 3The equation of the straight line is y = 5x + 3.

(c)
$$m = \frac{11 + 4}{-2 - 3}$$

 $= \frac{15}{-5}$
 $= -3$
 $y = -3x + c$
Substitute $x = -2, y = 11,$
 $11 = -3(-2) + c$
 $11 = 6 + c$
 $c = 5$
The equation of the straight line is $y = -3x + 5.$
(d) $m = \frac{-1 + 3}{-4 - 4}$
 $= \frac{2}{-8}$
 $= -\frac{1}{4}$
 $y = -\frac{1}{4}x + c$
Substitute $x = -4, y = -1,$
 $-1 = -\frac{1}{4}(-4) + c$
 $-1 = 1 + c$
 $c = -2$
The equation of the straight line is $y = -\frac{1}{4}x - 2.$
19 (a)

(b) The coordinates of the point of intersection are (-2, 3).

20 (a) $y = 4x - 5 \dots (1)$ $y = 3 \dots (2)$ Substitute (2) integration

Substitute 2 into 1,
$$3 = 4x - 5$$

$$4x = 8$$

$$x = 2$$

A4

.: Point of intersection: (2, 3)

(b)
$$3x - 2y = 1 \dots \textcircled{0}$$

 $y = -5x - 7 \dots \textcircled{2}$
Substitute $\textcircled{2}$ into $\textcircled{0}$,
 $3x - 2(-5x - 7) = 1$
 $3x + 10x + 14 = 1$
 $13x = -13$
 $x = -1$

From (2), y = -5(-1) - 7= 5 - 7= -2 \therefore Point of intersection: (-1, -2)(c) $y = x - 7 \dots$ ① $x-\frac{y}{4}=4\ldots$ ② $(2) \times 4, 4x - y = 16 \dots (3)$ (1 + 3), 4x = x + 93x = 9x = 3From ①, y = 3 - 7= -4 \therefore Point of intersection: (3, -4)(d) $2x + y = 1 \dots$ ① $-\frac{x}{12} + \frac{y}{6} = 1 \dots \textcircled{2}$ $(2) \times 24, -2x + 4y = 24 \dots (3)$ (1 + 3), y + 4y = 1 + 245y = 25y = 5From (1), 2x + 5 = 12x = -4x = -2 \therefore Point of intersection: (-2, 5) **21** (a) 6 4 = 1 2 -20 b Point of intersection: (4, -2)(b) $x - 2y = 8 \dots$ ① $\frac{x}{3} + \frac{y}{6} = 1 \dots \textcircled{2}$ $(2) \times 6, 2x + y = 6$ $y = 6 - 2x \dots ③$ Substitute 3 into 1, x - 2(6 - 2x) = 8x - 12 + 4x = 85x = 20x = 4From ③, y = 6 - 2(4)= -2Point of intersection: (4, -2)

(c) $x - 2y = 8 \dots$ ① $\frac{x}{3} + \frac{y}{6} = 1 \dots @$ $(2 \times 12, 4x + 2y = 12 \dots (3))$ (1) + (3), x + 4x = 8 + 125x = 20x = 4From ①, 4 - 2y = 8-2y = 4y = -2Point of intersection: (4, -2)22 (a) The *y*-intercept of the straight line *BC* is 4. $\therefore B(0, 4)$ 4x + y = kSubstitute x = 0, y = 4, 4(0) + 4 = kk = 4(b) The straight line *AD* is parallel to the *x*-axis. \therefore The equation of the straight line *AD* is y = -2. Gradient CD = Gradient AB(c) = -4y = -4x + cSubstitute x = 6, y = -2, -2 = -4(6) + c-2 = -24 + cc = 22The equation of the straight line *CD* is y = -4x + 22. (d) $4x + y = 4 \dots$ ① $v = -2 \dots @$ Substitute 2 into 1, 4x - 2 = 44x = 6 $x = \frac{3}{2}$ The coordinates of point *A* are $\left(\frac{3}{2}, -2\right)$. Summative Practice **1** A 3y = x + 12When x = 0, 3v = 12

$$y = 4$$

The *y*-intercept = 4
$$B \quad \frac{1}{2}y = 2x - 3$$

When $x = 0$,
$$\frac{1}{2}y = -3$$

 $y = -6$
The *y*-intercept = -6

C $-\frac{x}{6} + \frac{y}{3} = 1$ When x = 0, $\frac{y}{3} = 1$ v = 3The *y*-intercept = 3**D** 5x - 3y = 9When x = 0, -3y = 9y = -3The *y*-intercept = -3Answer: C 2 3y = kx + 5 $y = \frac{k}{2}x + \frac{5}{2}$ Gradient = $\frac{k}{3}$ x + y = 10y = -x + 10Gradient = -1 $\frac{k}{3} = \frac{1}{2} \times (-1)$ $k = -\frac{3}{2}$ Answer: B 3 Gradient, 8 *m* = --(-4) = 2 y-intercept, c = 8The equation of the straight line is y = 2x + 8. Answer: A $4 \frac{k-5}{-8-2} = \frac{4}{5}$ $\frac{k-5}{-10} = \frac{4}{5}$ k - 5 = -8k = -3Answer: B 5 px + qy = 6Substitute x = 1, y = -3, p(1) + q(-3) = 6 $p - 3q = 6 \dots$ (1) Substitute x = -2, y = -12, p(-2) + q(-12) = 6-2p - 12q = 6 $-p - 6q = 3 \dots 2$ (1 + 2), -3q - 6q = 9-9q = 9q = -1

From ①, p - 3(-1) = 6p + 3 = 6p = 3

Alternative method Gradient, $m = \frac{-12 + 3}{-2 - 1}$ $= \frac{-9}{-3}$ = 3 y = 3x + cSubstitute x = 1, y = -3, -3 = 3(1) + c -3 = 3 + c c = -6The equation of the straight line is y = 3x - 6 or 3x - y = 6. $\therefore p = 3, q = -1$

Answer: **D**

- **6** qy = (2p + 5)x + 9
 - (a) Straight line that is parallel to the *x*-axis has equation of the form *y* = *k*.

 $2p + 5 = 0 \text{ and } q \neq 0$ 2p = -5 $p = -\frac{5}{2}$ $\therefore q \neq 0, p = -\frac{5}{2}$

(b) Straight line that is parallel to the *y*-axis has equation of the form x = h.

$$q = 0 \text{ and } 2p + 5 \neq 0$$

 $2p \neq -5$
 $p \neq -\frac{5}{2}$
 $\therefore p \neq -\frac{5}{2}, q = 0$

7

A6

 $=\frac{6}{2}$ = 3m = 3*v*-intercept, c = -4The equation of the straight line *MN* is y = 3x - 4. 8 (a) (i) $\frac{x}{2} + \frac{y}{(-4)} = 1$ $\frac{x}{2} - \frac{y}{4} = 1$ (ii) Gradient of the straight line *l* $m = -\frac{-4}{2}$ = 2 y = 2x + cSubstitute x = -3, y = 0, 0 = 2(-3) + c0 = -6 + cc = 6The equation of the straight line *l* is y = 2x + 6 or 2x - y = -6. (b) Straight line k: $\frac{x}{2} - \frac{y}{4} = \frac{4}{2} - \frac{14}{4}$ $=2-\frac{7}{2}$ $=-\frac{3}{2}$ ≠ 1 \therefore Straight line *k* does not pass through point (4, 14). Straight line *l*: 2x - y = 2(4) - 14= 8 - 14= -6 \therefore Straight line *l* passes through point (4, 14). **9** (a) 2x + 5y = 28y = 5x ++ х 0 -4b 2 6

The points of intersection of the straight lines are (-2, 1), (4, 4) and (-1, 6).

(b) $y = 5x + 11 \dots \textcircled{0}$ $2x + 5y = 28 \dots \textcircled{2}$ Substitute y = 5x + 11 into 0,

$$2x + 5(5x + 11) = 28$$

$$2x + 25x + 55 = 28$$

$$27x = 28$$

$$x = -1$$

From ①, $y = 5(-1) + 11$

$$= 6$$

The point of intersection (-1, 6) of the straight lines y = 5x + 11 and 2x + 5y = 28 is the same as the graphical method.

10

(a) y = -3x + 20Substitute x = 5, y = k, k = -3(5) + 20= -15 + 20= 5 (b) $y = -3x + 20 \dots$ ① $x + y = 4 \dots @$ Substitute 1 into 2, x + (-3x + 20) = 4-2x + 20 = 4-2x = -16x = 8From (1), y = -3(8) + 20= -24 + 20= -4The coordinates of *B* are (8, -4).

(c) Let the straight line AC cuts the x-axis at point *E*(*a*, 0).

Gradient AE = Gradient AC

$$\frac{7-0}{-3-a} = \frac{7-5}{-3-5}$$
$$\frac{7}{-3-a} = \frac{2}{-8}$$
$$-28 = -3-a$$
$$-25 = -a$$
$$a = 25$$

The *x*-intercept of the straight line *AC* is 25.

11 (a) RS is parallel to the y-axis.

$$r_{x}$$
 coordinate of point $S = r_{x}$ coordinate of point $S = r_{y}$

x-coordinate of point S = x-coordinate of point Ra = -4

(b) (i) The equation of the straight line *PQ* is *y* = -3.
(ii) The equation of the straight line *RS* is *x* = -4.

 $=\frac{1+3}{-4-2}$ 6 $y = -\frac{2}{3}x + c$ Substitute x = 2, y = -3, $-3 = -\frac{2}{3}(2) + c$ $-3 = -\frac{4}{3} + c$ $c = -3 + \frac{4}{3}$ $=-\frac{5}{3}$ $y = -\frac{2}{3}x - \frac{5}{3}$ 3y = -2x - 52x + 3y = -5The equation of the straight line *PS* is 2x + 3y = -5. (ii) Gradient QR $=-\frac{2}{3}$ $y = -\frac{2}{3}x + c$ Substitute x = -4, y = 3, $3 = -\frac{2}{3}(-4) + c$ $3 = \frac{8}{3} + c$ $c = 3 - \frac{8}{3}$ $=\frac{1}{3}$ $y = -\frac{2}{3}x + \frac{1}{3}$ 3y = -2x + 12x + 3y = 1The equation of the straight line QR is 2x + 3y = 1.

(c) (i) Gradient PS

12 (a) OQ = 2 units $\therefore Q(0, -2)$

The equation of the straight line QR is y = -2.

$$= \frac{3+2}{-2-0}$$
$$= -\frac{5}{2}$$
$$y = -\frac{5}{2}x - c$$

Substitute
$$x = -2$$
, $y = 3$,
 $3 = -\frac{5}{2}(-2) + c$
 $3 = 5 + c$
 $c = -2$

The equation of the straight line *PQ* is $y = -\frac{5}{2}x - 2$.

(c) *QR* is parallel to the *x*-axis.

$$QR = 5 \text{ units}$$

$$\therefore R(5, -2)$$

$$y = -\frac{5}{2}x + c$$

Substitute x = 5, y = -2,

$$-2 = -\frac{5}{2}(5) + c$$

$$-2 = -\frac{25}{2} + c$$

$$c = \frac{21}{2}$$

$$y = -\frac{5}{2}x + \frac{21}{2}$$

When $y = 0$,

$$-\frac{5}{2}x + \frac{21}{2} = 0$$

$$\frac{5}{2}x = \frac{21}{2}$$

$$x = \frac{21}{5}$$

The *x*-intercept of the straight line *RS* is $\frac{21}{5}$.

Alternative method

Let the straight line *RS* cuts the *x*-axis at point *T*(*a*, 0). Gradient *RT* = Gradient *RS* $\frac{0+2}{a-5} = -\frac{5}{2}$ 4 = -5(a-5) 4 = -5a + 25 5a = 21 $a = \frac{21}{5}$ The *x*-intercept of the straight line *RS* is $\frac{21}{5}$.

(d) (i)
$$y = \frac{5}{3}x + c$$

Substitute $x = 5, y = -2,$
 $-2 = \frac{5}{3}(5) + c$
 $-2 = \frac{25}{3} + c$
 $c = -\frac{31}{3}$
 $y = \frac{5}{3}x - \frac{31}{3}$
 $3y = 5x - 31$
 $5x - 3y = 31$
The equation of the straight line is $5x - 3y = 31$.
(ii) $5x - 3y = 31 \dots 0$
 $y = -\frac{5}{2}x - 2$
 $2y = -5x - 4$
 $5x + 2y = -4 \dots 2$
 $(2) - (0), 5y = -35$
 $y = -7$
From $(0), 5x - 3(-7) = 31$

$$5x + 21 = 31$$
$$5x = 10$$
$$x = 2$$

The point of intersection of the two straight lines is (2, -7).