
## **Fully-worked Solutions**



| Number       | One significant<br>figure | Three significant<br>figures |
|--------------|---------------------------|------------------------------|
| (a) 6.148    | 6                         | 6.15                         |
| (b) 250.56   | 300                       | 251                          |
| (c) 0.81974  | 0.8                       | 0.820                        |
| (d) 0.004203 | 0.004                     | 0.00420                      |

## 7 A

6

 $n = \frac{1}{2} \text{ is not an integer}$   $\therefore 3 \times 10^{\frac{1}{2}} \text{ is not in standard form.}$  **B**  A = 40.2 > 10  $\therefore 40.2 \times 10^5 \text{ is not in standard form.}$  **C**   $\frac{1}{2} < 1$  $\therefore \frac{1}{2} \times 10^{-2} \text{ is not in standard form.}$ 

## D

*A* = 9.6 > 10 and *n* = −8 is an integer  $\therefore$  9.6 × 10<sup>-8</sup> is in standard form. Answer: **D** 

8 (a)  $800 = 8 \times 10^2$ (b)  $0.0063 = 6.3 \times 10^{-3}$ (c)  $1724 = 1.724 \times 10^3$ (d)  $0.00000591 = 5.91 \times 10^{-6}$ 9 (a)  $26 \times 10^2 = 2.6 \times 10^3$ (b)  $154.8 \times 10^{-6} = 1.548 \times 10^{-4}$ (c)  $0.032 \times 10^7 = 3.2 \times 10^5$ (d)  $0.00045 \times 10^{-3} = 4.5 \times 10^{-7}$ 10 12  $400\ 000$ 0.00064  $\overline{9 \times 10^{-1}}$  as  $1.2 \times 10^1$  as  $4 \times 10^5$  as  $6.4 \times 10^{-4}$ **11** (a)  $13\ 600 = 14\ 000$  $= 1.4 \times 10^4$ 

(b) 
$$705\ 800 = 700\ 000$$
  
=  $7 \times 10^5$ 

A1

(c) 0.04296 = 0.0430 $= 4.30 \times 10^{-2}$ (d) 0.00000287 = 0.0000029 $= 2.9 \times 10^{-6}$ 12 (a) 584 + 6103 = 6687 $= 6.687 \times 10^{3}$ (b) 0.46 - 0.0007 = 0.4593 $= 4.593 \times 10^{-1}$ (c)  $320 \times 80 = 25600$  $= 2.56 \times 10^4$ (d)  $0.12 \div 2400 = 0.00005$  $= 5 \times 10^{-5}$ **13** (a)  $2 \times 10^5 + 7 \times 10^5 = (2+7) \times 10^5$  $= 9 \times 10^5$  [] (b)  $5 \times 10^{-3} - 3 \times 10^{-4} = 5 \times 10^{-3} - 3 \times 10^{-1} \times 10^{-3}$  $= 5 \times 10^{-3} - 0.3 \times 10^{-3}$  $= (5 - 0.3) \times 10^{-3}$  $= 4.7 \times 10^{-3}$  $\neq 2 \times 10^{-3}$  [X] (c)  $4 \times 10^3 \times 9 \times 10^5 = (4 \times 9) \times (10^3 \times 10^5)$  $= 36 \times 10^{8}$  $= 3.6 \times 10^9$  [] (d)  $(6 \times 10^6) \div (8 \times 10^{-2}) = \frac{6 \times 10^6}{8 \times 10^{-2}}$  $=\frac{6}{8}\times\frac{10^6}{10^{-2}}$  $= 0.75 \times 10^{6 - (-2)}$  $= 7.5 \times 10^{-1} \times 10^{8}$  $= 7.5 \times 10^7$  [] 14 (a)  $3.7 \times 10^6 - 5 \times 10^5 = 3.7 \times 10^6 - 0.5 \times 10^6$  $= (3.7 - 0.5) \times 10^{6}$  $= 3.2 \times 10^{6}$ (b)  $8 \times 10^{-3} - 4 \times 10^{-5} = 8 \times 10^{-3} - 0.04 \times 10^{-3}$  $= (8 - 0.04) \times 10^{-3}$  $= 7.69 \times 10^{-3}$ (c)  $6 \times 10^4 \times 7 \times 10^3 = (6 \times 7) \times (10^4 \times 10^3)$  $= 42 \times 10^{4} + 3$  $= 4.2 \times 10^{8}$ (d)  $\frac{3 \times 10^{-6}}{4 \times 10^{-2}} = \frac{3}{4} \times \frac{10^{-6}}{10^{-2}}$  $= 0.75 \times 10^{-6 - (-2)}$  $= 7.5 \times 10^{-5}$ 15 (a) Mass of one atom of oxygen  $= 16 \times 1.66 \times 10^{-24}$  $= 26.56 \times 10^{-24}$  $= 2.656 \times 10^{-23} g$ (b) Mass of one molecule of water  $= 2 \times 1.66 \times 10^{-24} + 2.656 \times 10^{-23}$  $= 0.332 \times 10^{-23} + 2.656 \times 10^{-23}$  $= 2.988 \times 10^{-23} g$ 

16 (a) Distance travelled  $= 3 \times 10^5 \times 15$  $= (3 \times 15) \times 10^{5}$  $=45 \times 10^{5}$  $= 4.5 \times 10^{6} \text{ km}$ (b) Time taken =  $\frac{5.4 \times 10^{10} \times 10^{-3}}{5.4 \times 10^{-3}}$  $3 \times 10^{5}$  $=\frac{5.4\times10^7}{3\times10^5}$  $=\frac{5.4}{3}\times\frac{10^7}{10^5}$  $= 1.8 \times 10^{2} \text{ s}$ Summative Practice 1 A Correct **B** Correct C Wrong D Correct Answer: C 2  $0.02698 \approx 0.0270$  (three significant figures) Answer: D **3** 507 000  $= 5.07 \times 10^{5}$  $\approx 5.1 \times 10^5$  (two significant figures) Answer: **B**  $4 \quad \frac{215\ 000}{0.0005} = \frac{2.15 \times 10^5}{5 \times 10^{-4}}$  $=\frac{2.15}{5}\times\frac{10^5}{10^{-4}}$  $= 0.43 \times 10^{5 - (-4)}$  $= 0.43 \times 10^{9}$  $=4.3 \times 10^{-1} \times 10^{9}$  $= 4.3 \times 10^{8}$ Answer: D 5  $8 \times 10^{7} - 6 \times 10^{5} = 8 \times 10^{7} - 6 \times 10^{-2} \times 10^{7}$  $= 8 \times 10^7 - 0.06 \times 10^7$  $= (8 - 0.06) \times 10^7$  $= 7.94 \times 10^{7}$ Answer: D

6

| Number   | Number of significant figures | One significant figure |
|----------|-------------------------------|------------------------|
| 5 431    | 4                             | 5 000                  |
| 170 000  | 2                             | 200 000                |
| 0.000926 | 3                             | 0.0009                 |
| 20.080   | 5                             | 20                     |

7 (a) Number of significant figures of 342 000 (in the nearest hundred) is 4. (b)  $\frac{0.0516}{0.03} = 1.72$  $\approx 1.7$  (two significant figures) 8 (a)  $\frac{3}{4} \times 10^6 = 0.75 \times 10^6$  $= 7.5 \times 10^{-1} \times 10^{6}$  $= 7.5 \times 10^{5}$  $\therefore A = 7.5, n = 5$ (b)  $10.496 \times 10^{-13} = 1.0496 \times 10^{1} \times 10^{-13}$  $= 1.0496 \times 10^{-12}$ (i)  $1.0 \times 10^{-12}$  (two significant figures) (ii)  $1.050 \times 10^{-12}$  (four significant figures) **9** (a)  $4\,800 \times 0.03 = 4.8 \times 10^3 \times 3 \times 10^{-2}$  $= (4.8 \times 3) \times (10^3 \times 10^{-2})$  $= 14.4 \times 10^{3-2}$  $= 1.44 \times 10^{1} \times 10^{1}$  $= 1.44 \times 10^{2}$ (b)  $5.2 \times 10^{-6} + 9.76 \times 10^{-5}$  $= 5.2 \times 10^{-1} \times 10^{-5} + 9.76 \times 10^{-5}$  $= 0.52 \times 10^{-5} + 9.76 \times 10^{-5}$  $= (0.52 + 9.76) \times 10^{-5}$  $= 10.28 \times 10^{-5}$  $= 1.028 \times 10^{1} \times 10^{-5}$  $= 1.028 \times 10^{-4}$ 10 (a)  $(2 \times 10^5)^3 \times (7 \times 10^{-6}) = 2^3 \times (10^5)^3 \times 7 \times 10^{-6}$  $= 8 \times 10^{15} \times 7 \times 10^{-6}$  $= (8 \times 7) \times (10^{15} \times 10^{-6})$  $= 56 \times 10^{9}$  $= 5.6 \times 10^1 \times 10^9$  $= 5.6 \times 10^{10}$ (b)  $\frac{(2 \times 10^5)^3 \times (7 \times 10^{-6})}{(0.08 \times 10^4)^2} = \frac{5.6 \times 10^{10}}{(0.08 \times 10^4)^2}$  $5.6 \times 10^{10}$  $=\frac{3.0\times12}{0.08^2\times(10^4)^2}$  $5.6 \times 10^{10}$  $=\frac{5.0\times12}{(8\times10^{-2})^2\times10^8}$  $=\frac{5.6\times10^{10}}{64\times10^{-4}\times10^{8}}$ =  $\frac{5.6 \times 10^{10}}{10}$  $64 \times 10^4$  $=\frac{5.6}{64}\times\frac{10^{10}}{10^4}$  $= 0.0875 \times 10^{6}$  $= 8.75 \times 10^{-2} \times 10^{6}$  $= 8.75 \times 10^4$ 

**11** (a) Distance of satellite from the centre of the earth  $=4.23 \times 10^4 - 6.4 \times 10^3$  $=4.23 \times 10^4 - 0.64 \times 10^4$  $= (4.23 - 0.64) \times 10^4$  $= 3.59 \times 10^4$  km (b) Volume of the earth  $=\frac{4}{2}\pi \times 6\ 400^3$  $=\frac{4}{3}\pi\times(6.4\times10^3)^3$  $=\frac{4}{3}\pi \times 6.4^3 \times (10^3)^3$  $= 1.098.5 \times 10^{9}$  $= 1.0985 \times 10^{3} \times 10^{9}$  $= 1.0985 \times 10^{12}$  $\approx 1.10 \times 10^{12} \text{ km}^3$  (two significant figures) 12 (a)  $25 \times 1.4 \times p = 1.75 \times 10^4$  $35 \times p = 1.75 \times 10^4$  $p = 0.05 \times 10^4$  $= 5 \times 10^{-2} \times 10^{4}$  $= 5 \times 10^{2}$ Length of the iron sheet is  $5 \times 10^2$  cm. (b) Mass of iron sheet  $= 1.75 \times 10^4 \times (10^{-2})^3 \times 7.87$  $=(1.75 \times 7.87) \times 10^4 \times (10^{-2})^3$  $= 13.8 \times (10^4 \times 10^{-6})$  $= 1.38 \times 10^{1} \times 10^{-2}$  $= 1.38 \times 10^{-1} \text{ kg}$ 13 (a) Area of the industrial region  $= (27.2 \times 10^3) \times (20 \times 10^3)$  $= (27.2 \times 20) \times (10^3 \times 10^3)$  $= 544 \times 10^{6}$  $= 5.44 \times 10^2 \times 10^6$  $= 5.44 \times 10^8 \text{ m}^2$ (b) Area of the industrial region  $= 27 \times 20 \times 640 \div 2.59$  acres = 134 000 acres  $= 1.34 \times 10^{5}$  acres Alternative method Area of the industrial region

Area of the industrial region =  $5.44 \times 10^8 \times (10^{-3})^2 \times 640 \div 2.59$ =  $(5.44 \times 640 \div 2.59) \times 10^8 \times (10^{-3})^2$ =  $1.340 \times 10^8 \times 10^{-6}$ =  $1.34 \times 10^3 \times 10^2$ =  $1.34 \times 10^5$  ekar/acres