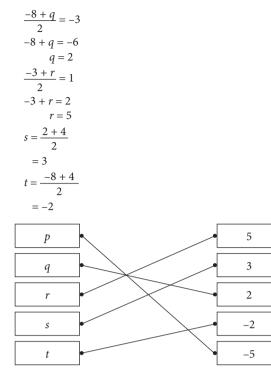

Fully-worked Solutions



(b) Distance between *A* and *B* $=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ **6** (a) Distance between two points $=\sqrt{(-7+2)^2+(2-6)^2}$ $=\sqrt{(-5)^2+(-4)^2}$ $=\sqrt{25+16}$ $=\sqrt{41}$ = 6.40 units (b) Distance between two points $=\sqrt{(10+4)^2+(-8-2)^2}$ $=\sqrt{14^2 + (-10)^2}$ $=\sqrt{196 + 100}$ $=\sqrt{296}$ = 17.20 units 7 (a) 0 (b) Distance between A and B $=\sqrt{(-6-10)^2+(4+8)^2}$ $=\sqrt{(-16)^2+12^2}$ $=\sqrt{256+144}$ $=\sqrt{400}$ = 20 units 8 R(-8, 12)М P(4, 3)Q(-8, k)(a) $PR = \sqrt{(4+8)^2 + (3-12)^2}$ $=\sqrt{12^2+(-9)^2}$ $=\sqrt{144+81}$ $=\sqrt{225}$ = 15 units PQ = 15 units

A1

(b) M(-8, 3) is the midpoint of QR. Distance of RM = 12 - 3= 9 units Distance of MQ = 9 units 3 - k = 9*k* = -6 (c) QR = 12 - (-6)= 12 + 6= 18 units **9** (a) AB = 4 units 5 - h = 4h = 1*CD* is parallel to the *x*-axis. $\therefore k = -3$ (b) (i) Distance of AD $=\sqrt{(1-6)^2+(9+3)^2}$ $=\sqrt{(-5)^2+12^2}$ $=\sqrt{25+144}$ $=\sqrt{169}$ = 13 units (ii) Distance of BC $=\sqrt{(5-14)^2+(9+3)^2}$ $=\sqrt{(-9)^2+12^2}$ $=\sqrt{81+144}$ $=\sqrt{225}$ = 15 units (c) Perimeter of trapezium ABCD = 4 + 15 + 8 + 13= 40 units **10** $\left(\frac{x+8}{2}, \frac{7+1}{2}\right) = (5, y)$ $\left(\frac{x+8}{2},\,4\right) = (5,\,y)$ $\frac{x+8}{2} = 5$ x + 8 = 10x = 2y = 4Answer: B 11 \overline{D}^{6} (3, 3)(-1, 2)Ħ Ε \mathcal{O} 3, _1 (-2. G F

16 Midpoint of QS = Midpoint of PR

$$\left(\frac{m+0}{2}, \frac{n+4}{2}\right) = \left(\frac{8+4}{2}, \frac{0+12}{2}\right)$$
$$\left(\frac{m}{2}, \frac{n+4}{2}\right) = (6, 6)$$
$$\frac{m}{2} = 6$$
$$m = 12$$
$$\frac{n+4}{2} = 6$$
$$n+4 = 12$$
$$n = 8$$

17 M(-2, 9) is the midpoint of *HK*.

$$\frac{-7+r}{2} = -2$$
$$-7+r = -4$$
$$r = 3$$

18 (a)
$$AD = BC$$

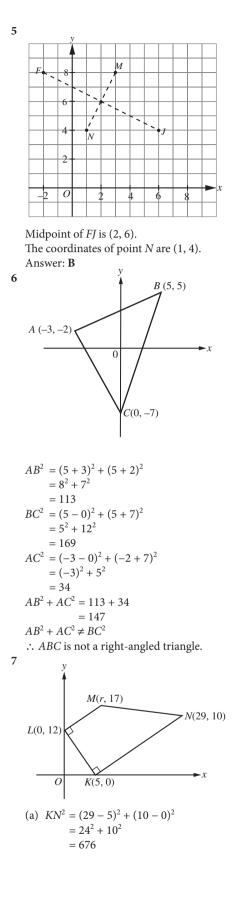
 $AD = 6 - 3 = 3$ units
Coordinates of point *D* are (-6, -3). [\checkmark]
(b) Coordinates of the midpoint of *AC*
 $= \left(\frac{-6+2}{2}, \frac{0+3}{2}\right)$
 $-\left(-2, \frac{3}{2}\right)$ [\checkmark]

$$= \left(-2, \frac{3}{2}\right)$$
(c) $AB = \sqrt{(2+6)^2 + (6-0)^2}$
 $= \sqrt{8^2 + 6^2}$
 $= \sqrt{64 + 36}$
 $= \sqrt{100}$
 $= 10$ units

Perimeter of
$$ABCD = 2(10 + 3)$$

 $= 2(13)$
 $= 26 \text{ units} \quad [\checkmark]$
19 (a) $PS = 7 - (-5)$
 $= 7 + 5$
 $= 12 \text{ units}$
 $RS^2 = 13^2 - 12^2$
 $= 169 - 144$
 $= 25$
 $RS = 5 \text{ units}$
The coordinates of point R are (7, 3).
(b) (i) Coordinates of the centre of circle
 $= \text{Coordinates of the midpoint of } PR$
 $= \left(\frac{-5 + 7}{2}, \frac{-2 + 3}{2}\right)$
 $= \left(1, \frac{1}{2}\right)$
(ii) $PR = \sqrt{(-5 - 7)^2 + (-2 - 3)^2}$
 $= \sqrt{(-12)^2 + (-5)^2}$
 $= \sqrt{144 + 25}$
 $= \sqrt{169}$
 $= 13 \text{ units}$
Radius of circle
 $= \frac{1}{2}PR$
 $= \frac{13}{2}$
 $= 6\frac{1}{2}$ units
(c) Distance of K from the centre of circle
 $= \sqrt{(3 - 1)^2 + \left(6 - \frac{1}{2}\right)^2}$
 $= \sqrt{2^2 + \left(\frac{11}{2}\right)^2}$
 $= \sqrt{4 + \frac{121}{4}}$
 $= \sqrt{\frac{137}{4}}$
 $= 5.85 \text{ units}$

The distance of *K* from the centre of the circle is less than the radius of circle. \therefore *K* lies inside the circle.


Summative Practice

1

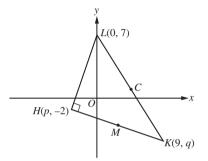
$$PQ = 2 - (-6)$$

= 2 + 6
= 8 units
$$QR = 4 - (-2)$$

= 4 + 2
= 6 units
$$PR^{2} = (2 + 6)^{2} + (4 + 2)^{2}$$

= 8² + 6²
= 100
$$PR = 10 \text{ units}$$

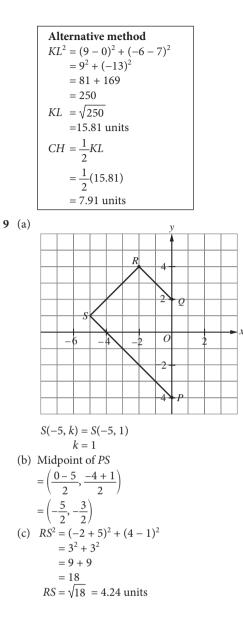
© EPH Publishing (M) Sdn. Bhd. (199801017497) 2025


PQ: QR = 8:6= 4 : 3 Answer: D 2 $OP^2 = (4-0)^2 + (3-0)^2$ = 16 + 9 = 25 OP = 5 units A $OT^2 = (2-0)^2 + (5-0)^2$ = 4 + 25 = 29 $OT = \sqrt{29}$ units **B** $OU^2 = (-3 - 0)^2 + (5 - 0)^2$ = 9 + 25= 34 $OU = \sqrt{34}$ units **C** OV = 0 - (-5)= 5 units **D** $OW^2 = (1-0)^2 + (-5-0)^2$ = 1 + 25= 26 $OW = \sqrt{26}$ units Answer: C 3 R(6, n)Q(-1, -3)P(m, -5) $\left(\frac{m+6}{2}, \frac{-5+n}{2}\right) = (-1, -3)$ $\frac{m+6}{2} = -1$ m + 6 = -2m = -8 $\frac{-5+n}{2} = -3$ 2 -5 + n = -6n = -1Answer: A 4 *VW* is parallel to the *x*-axis. VW = 7k - 2 = 7 or 2 - k = 7k = 9 or k = -5Answer: B

$$KN = \sqrt{676}$$

= 26 units
(b) $KN = 2LM$
 $LM = 13$ units
 $LM^2 = 169$
 $(r - 0)^2 + (17 - 12)^2 = 169$
 $r^2 + 25 = 169$
 $r^2 = 144$
 $r = 12$
(c) Area of trapezium

$$= \frac{1}{2} \times (13 + 26) \times 13$$
$$= \frac{1}{2} \times 39 \times 13$$
$$= 253.5 \text{ units}^2$$


8

(a)
$$\left(\frac{p+9}{2}, \frac{-2+q}{2}\right) = (3, -4)$$

 $\frac{p+9}{2} = 3$
 $p+9 = 6$
 $p = -3$
 $\frac{-2+q}{2} = -4$
 $-2+q = -8$
 $q = -6$

(b) *KL* is the diameter of the circle. Centre of circle, *C* is the midpoint of *KL*.

$$C\left(\frac{9+0}{2}, \frac{-6+7}{2}\right) = C\left(\frac{9}{2}, \frac{1}{2}\right)$$
$$CH^{2} = \left(\frac{9}{2}+3\right)^{2} + \left(\frac{1}{2}+2\right)^{2}$$
$$= \left(\frac{15}{2}\right)^{2} + \left(\frac{5}{2}\right)^{2}$$
$$= \frac{225}{4} + \frac{25}{4}$$
$$= \frac{250}{4}$$
$$CH = \sqrt{\frac{250}{4}}$$
$$= 7.91 \text{ units}$$

A5