Fully-worked Solutions

(cm)	(cm)	Diameter
7.855	2.5	3.142
11.311	3.6	3.142
13.195	4.2	3.142
17.91	5.7	3.142
21.365	6.8	3.142

(b)
$$\frac{\text{Circumference}}{\text{Diameter}} = 3.142$$

Circumference

$$= 3.142 \times \text{Diameter}$$
12 (a) Circumference

$$= 2 \times \frac{22}{7} \times 7$$

$$= 44 \text{ cm}$$
Area $= \frac{22}{7} \times 7^2$

$$= 154 \text{ cm}^2$$
(b) $220 = 2 \times \frac{22}{7} \times r$
 $1 540 = 44 \times r$
 $r = 35 \text{ mm}$
Area $= \frac{22}{7} \times 35^2$
 $= 3 850 \text{ mm}^2$
(c) $13.86 = \frac{22}{7} \times r^2$
 $97.02 = 22r^2$
 $r^2 = 4.41$
 $r = 2.1 \text{ m}$
Circumference $= 2 \times \frac{22}{7} \times 2.1$
 $= 13.2 \text{ m}$
13 (a) Circumference of object
 $= 2 \times 3.142 \times 1.4$
 $= 8.8 \text{ cm}$
(b) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(c) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(d) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(d) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(e) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(f) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(c) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 13.2 \text{ cm}$
(d) Circumference of object
 $= 2 \times 3.142 \times 2.1$
 $= 12 \text{ circumference}$
 $= \frac{1}{2} \times 2\pi \times r$
 $= \pi \times r$
 $y = r$
Area of circle
 $= x \times y$
 $= \pi \times r x$
 $y = r$
Area of circle
 $= x \times y$
 $= \pi \times r \times r$
 $= \pi \times r^2$
15 (a) Length of arc
 $= \frac{30^{\circ}}{360^{\circ}} \times 2\pi \times 12$
 $= 2\pi \text{ cm}$

(b) Length of arc $=\frac{160^{\circ}}{360^{\circ}}\times 2\pi\times 9$ $= 8\pi$ cm (c) Length of arc $=\frac{210^{\circ}}{360^{\circ}}\times 2\pi\times 6$ $= 7\pi$ cm 16 (a) $S = \frac{45^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 14$ = 11 cm (b) $4\pi = \frac{80^\circ}{360^\circ} \times 2\pi \times r$ $2 = \frac{2}{9}r$ r = 9 cm(c) $10\pi = \frac{\theta}{360^\circ} \times 2\pi \times 15$ $\frac{1}{3} = \frac{\theta}{360^{\circ}}$ $\theta = \frac{1}{3} \times 360^{\circ}$ = 120° 17 $\frac{200^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times r = 440$ r = 12618 (a) Area of sector $=\frac{70^{\circ}}{360^{\circ}}\times\frac{22}{7}\times6^{2}$ $= 22 \text{ cm}^2$ (b) Area of sector $=\frac{210^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 18^{2}$ = 594 cm² **19** (a) $36.96 = \frac{x}{360^\circ} \times \frac{22}{7} \times 8.4^2$ $x = \frac{36.96}{8.4^2} \times \frac{7}{22} \times 360^{\circ}$ (b) $99 = \frac{140^{\circ}}{360^{\circ}} \times \frac{22}{7} \times r^2$ $r^2 = 99 \times \frac{360^{\circ}}{140^{\circ}} \times \frac{7}{22}$ = 81r = 9 cm**20** (a) $PR^2 = 25^2 - 20^2$ = 625 - 400= 225 PR = 15 cm(b) Circumference of circle $= 2 \times 3.142 \times 5$ = 31.42 cm (c) Perimeter of the shaded region = 20 + 25 + 15 + 31.42= 91.42 cm

